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1   Executive Summary
Dear Curve team,

Thank you for trusting us to help you with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of tricrypto-ng according to
Scope to support you in forming an opinion on their security risks.

Curve implements an updated and optimized version of the existing Curve Curve Tricrypto Pool. It is an
automatic market maker which allows exchanging of three tokens that do not need to be equivalent in
value. The pools are rebalanced continuously to provide the most liquidity around the current price point.

The most critical subjects covered in our audit are overflow checks, the precision of arithmetic operations,
and functional correctness. Some issues regarding overflows and precision losses were identified and
subsequently fixed. Security regarding these subjects is high.

The general subjects covered are gas efficiency, access control, and trustworthiness. Security regarding
all the aforementioned subjects is high. The efficiency of the current price calculation has been
significantly improved.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity
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1.1   Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 5

• Code Corrected 5

Low -Severity Findings 13

• Code Corrected 9

• Specification Changed 1

• Code Partially Corrected 1

• Risk Accepted 1

• Acknowledged 1

Curve - tricrypto-ng - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com


2   Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

 

2.1   Scope
The assessment was performed on the source code files inside the tricrypto-ng repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 16 February 2023 ec723dd9678eb046791280ff3a3769781f229bfd Initial Version

2 6 March 2023 acaadf64fa0c209df896964e6716d3ee0384d76a Second Version

3 2 May 2023 93569cc351c4e13dc2b49334d435212027d71fb8 Third Version

4 14 Jun 2023 5968bbeff84fb2b2cad125b9a2c6bfb7a92d5a72 Fourth Version

For the Vyper smart contracts, the compiler version 0.3.7 was chosen.

The following files were in scope:

• CurveCryptoMathOptimized3.vy

• CurveTricryptoFactory.vy

• CurveTricryptoOptimizedWETH.vy

Note that the assessment was performed with the assumption that only three coins are used for the pool,
i.e. N_COINS == 3 and N**N == 27.

 

2.1.1   Excluded from scope
Third-party dependencies, testing files, and any other files not listed above are outside the scope of this
review.

 

2.2   System Overview
Version 1This system overview describes the initially received version ( ) of the contracts as defined in the

Assessment Overview.

Curve offers tricrypto-ng, an updated and optimized version of the Curve Tricrypto Pool, an automatic
market maker which continuously rebalances the pool to provide the most liquidity around the current
price.

The AMM infrastructure revolves around the following parts:

1. The factory
This allows the permissionless deployment of tricrypto pools, from a blueprint stored in the
factory. Pools' information is also stored in the factory.

2. The Tricrypto swap contract
AMM tricrypto pools deployed from the factory are an instance of this blueprint.
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3. The Math contract
This is a stateless library contract that implements the mathematical operations used by
tricrypto pools.

4. The Views contract
It is a stateless library contract that implements utility methods to query the state of a tricrypto
pool.

5. The Liquidity Gauge Blueprint contract
Liquidity Gauges deployed through the factory are instances of this contract.

2.2.1   The Factory
The factory introduces a permissionless way to deploy 3-coin cryptoswap (Tricrypto) pools. Its
deploy_pool() method deploys a tricrypto pool, the CurveTricryptoOptimizedWETH.vy contract,
and allows setting its parameters. It helps the user with operations such as packing the 3 fee parameters
into a single uint256, packing the rebalancing parameters, and packing the initial prices. Moreover, it
implements validation of the parameters. The pool is deployed through Vyper's built-in method
create_from_blueprint(), which executes the CREATE opcode using code from a specific address
as initialization bytecode. The address of the newly deployed pool is appended to the pool_list, and
information about the pool (its coins, and their respective number of decimals) is stored in
pool_data[pool]. Keys computed as the xor of each pair of pool coins are computed and used as
keys in the markets hashmap to find the pool based on two of its coins.

A permissionless method deploy_gauge() allows deploying a liquidity gauge for the pool, through
Vyper's create_from_blueprint().

The factory has an admin who can set the admin fee receiver of every pool. The admin fee is 50% of all
fees collected in the pool. The admin can set the pool implementation and the gauge implementation,
which changes the blueprints that are used in later deployments of pools. The admin can set the Views
contract in the factory. Users of Curve and external integrators should access the Views contract through
the factory so that it can be updated by the admin should it be necessary. Finally, the admin has the
power to change the parameters of every pool deployed through the factory and to set rewards on the
liquidity gauges.

2.2.2   The Tricrypto swap
CurveTricryptoOptimzedWETH.vy implements the Curve 3-coin CryptoSwap. It features some
changes and improvements over the previous implementation
<https://etherscan.io/address/0xd51a44d3fae010294c616388b506acda1bfaae46> of the 3-coin
CryptoSwap.

2.2.3   Tricrypto-ng improvements over Tricrypto V1

1. Handles native Ether

2. Optimizes gas usage through the use of unchecked mathematical operations

3. Improves the initial guesses used in Newton's method to compute the D value of the invariant

4. Improves swap performance by using a closed-form solution for the outgoing tokens, instead of
Newton's method

5. Implements reentrancy locks for read operations for added security

6. Exposes getters for the oracle price which compute the real oracle price instead of returning the
cached one

7. Introduces callback-based exchanges, improving the efficiency of Zap contracts

8. Includes the ERC20 functionality of the liquidity token in the contract itself
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9. Implements the ERC-2612 permit extension, allowing signed approvals for the liquidity token

10. Removes the factory admin's power to kill the exchange

11. Uses the derivative of the invariant to update the price oracle, instead of using the price of the last
exchange, which could be tampered with.

2.2.4   Tricrypto's Curve
The principle of operation of the Tricrypto swap is to keep the balances of the three coins satisfying a
mathematical invariant of the form F(x,y,z, D) = 0, where x, y, z are the balances and D
represents the total liquidity. The invariant defines a "curve" over which the balances of the coins are
allowed to change. Depending on the nature of the operation being executed, different manipulations of
this curve will happen.

Whenever a swap happens, the inbound coin balance (e.g. x) in the pool increases. To maintain the
invariant, one of the other two coins' balance must change (e.g. y). Therefore, if x' is the new balance of
the pool, the output amount will be the difference between y - y', which is the value that satisfies the
equation F(x',y',z,D) == 0. Executing a swap, therefore, consists of solving the invariant for the
new value of the output coin. Solving for y is reduced to the solution of a cubic polynomial, and is
performed in the math library (CurveCryptoMathOptimized3.vy) by the get_y function.

Changing the liquidity of the pool likewise reduces to computing the new parameter D after changing the
value of the three coin balances, so solving F(x',y',`z',D) == 0 for D. Solving for D is implemented
as an iterative method in the math library in function newton_D().

Every swap deduces a fee from the outgoing amount, which is retained in the pool, so the new y balance
is higher than the solution of the invariant. This is equivalent to a change in liquidity, which is why D is
recomputed after every swap.

The price of the coins in the pool can be computed as the derivative of one coin's balance with respect to
another in the invariant, or equivalently the ratio between an infinitesimal input of a coin and the
infinitesimal output received in the absence of fees. The coins' prices feed an internal price oracle, which
keeps track of the price evolution in a smooth and delayed way. The price oracle is used to reshape the
curve so that the flat area of the curve (where slippage is minimal for users) tracks the market price. The
evolution of the shape of the curve is delayed and smoothened to avoid price manipulations that would
allow profitable sandwiching attacks against the liquidity providers. The shape of the curve is also locked
as long as the liquidity providers are not realizing a profit, according to the xcp_profit metric.

Curve - tricrypto-ng - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com


2.2.5   User interactions with the Tricrypto swap
Liquidity providers, exchangers, and the admin are expected to interact with the pools. Liquidity providers
can supply liquidity as any amount of the three coins. In exchange, they receive liquidity tokens, which
are implemented as an ERC20 token in the same contract. To increase the liquidity of the pool, the
method add_liquidity is to be used. A fee is deducted from the minted liquidity tokens according to
how unbalanced the liquidity is supplied. If the liquidity is supplied proportionally to the internal price of
the tokens, a minimal fee is deducted. The fee increases as the supplied token values get more
unbalanced. Liquidity providers can withdraw liquidity through the methods remove_liquidity and
remove_liquidity_one_coin. remove_liquidity() withdraws the liquidity in a balanced way, by
burning the liquidity tokens provided, and transferring an amount of each of the three coins proportional
to the burned liquidity w.r.t. the total supply. No fee is applied, and the D parameter of the pool is simply
reduced proportionally to the withdrawn liquidity. remove_liquidity_one_coin() behaves similarly
to removing the liquidity in a balanced way, and then trading the two other coins for the third. A fee is
applied according to how unbalanced the pool is. Liquidity providers retain a fraction of every fee that is
collected through the pool's methods. Half of the total fees belong to the pool admin, and the other half to
the liquidity providers. Fees are automatically reinvested as additional liquidity in the pool. Exchangers
interact with the pool through exchange(), exchange_underlying(), or exchange_extended().
An amount of one of the three coins is transferred in, and an equal value of another coin, minus a fee, is
transferred out. For values in Ether, either native ETH or WETH can be used. exchange_extended()
allows transferring the input value during a callback to the exchange initiator. Slippage protection should
be specified to avoid frontrunning. After the exchange, the pool recomputes a new D value, since the fee
is deducted from the output amount, and therefore reinvested as liquidity in the pool. Another
permissionless entrypoint worth of note is claim_admin_fees(), which updates the coin balances with
any amounts of coins held by the contract but not accounted for in self.balances, distributes part of
the collected fees to the admin, in the form of freshly minted liquidity tokens, and recomputes D to
account for the new balances.

Finally, the pool's admin (who is also the factory's admin), can change the pool parameters. Changes to
A and gamma are gradually applied, through the ramp process. The A and gamma parameters are linearly
interpolated in time from their initial value, to reach their target value at the target time. This restricts the
Curve from changing quickly, preventing profitable sandwiching strategies that would hurt liquidity
providers. commit_new_parameters() allows setting new values for the fee parameters, and the
Oracle update parameters. The new values must be committed first, then applied by the admin after a
minimum wait of 3 days.

2.2.6   The Math contract
To reduce the size of the swap contract the mathematical operations have been factored in the
CurveCryptoMathOptimized3.vy contract. The external functions that it exposes that are necessary
for pool operation are:

1. get_y()

computes the amount of token i, given the balances of the other tokens and the value of D.
This has been upgraded from the previous version to save 75% gas through the use of a
closed-form solution, reducing the calculation to finding a root of a cubic polynomial. A fallback
using Newton's method is present.

2. newton_D()

The new value of D is computed given the pool's parameters and its balances. An initial value
can be specified for the iterative Newton-Halley method.

3. get_p()

computes the prices of each token with respect to the first one. This is implemented as taking
the partial derivative of the implicit function defined by the invariant.

4. cbrt()
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implements the cube root as a fixed number of iterations of Newton's algorithm. An initial value
is computed using one-third of the logarithm.

5. geometric_mean()

computes the geometric mean of three 1e18 precision numbers.

6. reduction_coefficient()

computes the coefficient that interpolates the fee from the mid_fee value for balanced pools to
the out_fee value for unbalanced pools.

7. wad_exp()

implements natural base exponentiation in 1e18 precision. Used in the exponential moving
average for the internal price Oracle

The mathematical operations have been reworked to make use of unchecked math, which saves a
considerable amount of gas.

2.2.7   Trust model
There are a few users and contracts that are trusted to behave honestly and fairly. They are:

• Factory Admin:
They control both the factory and the settings for all pools deployed by the factory. They are
trusted to set favorable parameters for the users of the various pools. They are also trusted not
to list malicious pool-, gauge-, and view implementations in the factory contract. Lastly, they are
trusted not to transfer ownership of the factory to a malicious actor.

• Pool Deployer:
The deployer of a pool generally has free reign over the parameters set in that pool, although
they must be within certain ranges. However, note that it is possible for a user to deploy a pool
that interacts with a malicious token. Given that any user can deploy a pool, caution should be
taken when interacting with pools deployed by untrusted users. For this assessment, we have
assumed that the pool deployers can be trusted not to deploy pools that interact with malicious
tokens.
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3   Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.
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4   Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

 

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

 

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

 

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

 

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.
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5   Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• AcknowledgedInefficient Defaulting to _newton_y 

• Code Partially CorrectedTypo in Event, Unused Variables 

• Risk AcceptedCREATE in Pool Deployment Could Reuse Addresses on Different Chains 

5.1   Inefficient Defaulting to _newton_y
Design Low Version 1 Acknowledged   

CS-TRICRYPTO-NG-001

The analytical solution implemented in get_y defaults back to the iterative _newton_y in the following
situation:

if sqrt_arg > 0:
    sqrt_val = convert(isqrt(convert(sqrt_arg, uint256)), int256)
else:
    return [self._newton_y(_ANN, _gamma, x, _D, i), 0]

However, this means that the _newton_y starts over from scratch and has to recalculate everything from
the initial values. Instead, a new method could be written that uses the existing values for a, b, c, and d
which calculates K0 using Newton's method to solve the equation:

aK3
0 + bK2

0 + cK0 + d = 0
Then, the value for y could be determined from this result. This way, the get_y function can return a
useful value for K0 instead of just defaulting to 0. This value can then be used as an initial guess for the
next call to newton_D, saving further gas in the future.

Acknowledged:

Defaulting to _newton_y() is rare when running the new code on historic tricrypto data, so Curve
accepts the risk of incurring more gas costs in rare edge cases.
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5.2   Typo in Event, Unused Variables
Design Low Version 1 Code Partially Corrected   

CS-TRICRYPTO-NG-002

Event UpdatePoolImplementation in CurveTricryptoFactory has first argument called
_implementtion_id. Field token in struct PoolArray of CurveTricryptoFactory is unused.
Argument calc_price of _calc_withdraw_one_coin() is unused.

Code partially corrected:

The token field of the PoolArray struct was removed. The calc_price argument was removed from
the _calc_withdraw_one_coin() function.

The first argument of the UpdatePoolImplementation event was changed to _implemention_id,
which is still spelled incorrectly.

 

5.3   CREATE in Pool Deployment Could Reuse
Addresses on Different Chains
Security Low Version 1 Risk Accepted   

CS-TRICRYPTO-NG-003

If the address of the pool factory is the same on two blockchains, then the deployment addresses of
pools will match on different chains, even if the pool parameters are different (different coins). This can
result in user mistakes or scam attempts.

Risk accepted:

Curve accepts the risk of pool contracts on different chains having the same address.
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6   Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedLoss of Precision in get_p() for Some Values of A 

Medium -Severity Findings 5

• Code CorrectedFirst Depositor Can Manipulate the Share Value to Steal Future Deposits 

• Code CorrectedSafety Parameters Differ Between Factory, Swap, and Math Contract 

• Code CorrectedSimpler Price Calculations 

• Code CorrectedUnsafe Operations 

• Code Corrected_log2() Returns Incorrect Results 

Low -Severity Findings 10

• Specification ChangedAdmin Can Set Unsafe Parameters Through commit_new_parameters() 

• Code CorrectedFee on remove_liquidity_one_coin() Is Computed on Initial Balance 

• Code CorrectedIncomplete Validation of Coins in Factory 

• Code CorrectedInitial Value K0_prev Recalculated Needlessly 

• Code CorrectedMagic Number 10000 Used Instead of Constant A_MULTIPLIER 

• Code CorrectedMath Implementation Cannot Be Upgraded in the Factory 

• Code CorrectedNo Getter for Length of Markets List in Factory 

• Code CorrectedPool Registered Twice in the Markets List for Each Key 

• Code CorrectedPossible Precision Loss in get_y 

• Code CorrectedRedundant Asserts in Call to _newton_y() 

 

6.1   Loss of Precision in get_p() for Some Values
of A
Correctness High Version 1 Code Corrected   

CS-TRICRYPTO-NG-014

Line 851 of CurveCryptoMathOptimized3.vy performs a division of ANN by 10000:

unsafe_div(ANN, 10000)

Value ANN ranges from 2700 to 270000000. The division can incur a substantial loss of precision that
affects the return value of get_p(). With ANN = 1707629, the current USDT/WBTC/WETH A value, a
price error of close to 1% is returned by get_p()
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Code corrected:

The order of operation has been modified so that the division by 10000 is performed when the
denominator has sufficient precision. The relative loss of precision on the c coefficient is now at most of
1e-5.

 

6.2   First Depositor Can Manipulate the Share
Value to Steal Future Deposits
Security Medium Version 1 Code Corrected   

CS-TRICRYPTO-NG-004

A malicious user can mint a single wei of shares before any deposit exists, then increase the price of the
single share through a direct transfer to the pool followed by calling claim_admin_fees(), which
sweeps unaccounted tokens and recomputes D. The next depositors will suffer severe rounding errors on
the number of shares they receive.

The shares distributed for the next deposits are calculated according to

d_token = token_supply * D / old_D - token_supply
...
d_token -= 1

Since token_supply will be 1, if D is between 2*old_D and 3*old_D, the tokens received by the
victim will round down to zero, but their deposit will still be transferred to the pool. old_D is under
complete control of the attacker, who can steal legitimate deposits by investing half of the deposit value.

Code corrected:

The share value manipulation was enabled by being able to call claim_admin_fees() to increase
significantly the value of single shares, when the total supply is low. claim_admin_fees() now will not
gulp tokens when the total supply is below 10**18. This makes the attack unfeasible, while not affecting
general operation, since the total supply in normal conditions will be in the order of magnitude of the D
parameter, which is between 10**17 (generally more) and 10**33.

 

6.3   Safety Parameters Differ Between Factory,
Swap, and Math Contract
Design Medium Version 1 Code Corrected   

CS-TRICRYPTO-NG-016

Safety bounds on pools parameters are different in the factory and the math contract.

Some are more restrictive in the factory:

1. MAX_GAMMA is 2*10**16 in the factory and swap, and 5*10**16 in MATH

2. MIN_A is 27000 in the factory and 2700 in MATH and swap

Some are less restrictive in the factory, which may lead to the deployment of invalid pools:

1. MAX_A is 27*10**9 in the factory, but 27*10**7 in MATH and swap

Curve - tricrypto-ng - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com


Code corrected:

1. MAX_GAMMA is 5*10**16 across all contracts.

2. MIN_A is 2700 across all contracts.

3. MAX_A is 27 * 10**7 across all contracts.

 

6.4   Simpler Price Calculations
Design Medium Version 1 Code Corrected   

CS-TRICRYPTO-NG-017

The derivation of the price calculations leads to more expensive calculations than necessary. The gas
costs of the get_p can be greatly reduced by simplifying the formula for the price. For example, by
defining the value G as follows:

G ⋅ K0 = 2K0
3 − K0

2(2γ + 3) + (γ + 1)2

The formula for the price of y with respect to x becomes:

py = x
y ⋅ G ⋅ K0 + NNAγ2K0

y
D

G ⋅ K0 + NNAγ2K0
x
D

An efficient implementation of this formula can reduce the costs of the price calculation by around 66%.

Code corrected:

The suggested formula was implemented in get_p. The _snekmate_mul_div function was removed
as it was no longer used.

 

6.5   Unsafe Operations
Correctness Medium Version 1 Code Corrected   

CS-TRICRYPTO-NG-019

Some multiplications in the get_y function are performed using unsafe_mul. However, several of
these can potentially overflow:

1. The following multiplication in the calculation of b can overflow:

unsafe_mul(unsafe_mul(unsafe_div(D**2, x_j), gamma**2), ANN)

For example with the following values:
D=10**33, x_j=10**31, gamma=5*10**16, ANN=2.7*10**8

In this case, the result is greater than 2**255 and hence overflows the int256 type.

Code corrected:

The outermost unsafe_mul, where the second factor is ANN, which could cause an overflow,
has been replaced with a safe multiplication.

2. This multiplication occurs when calculating delta1:

unsafe_mul(9, a * c)
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It can overflow when 2**255 / 9 < a*c < 2**255 / 3. Previously, only the multiplication
of 3a * c is done using overflow checks.

Code corrected:

The expression is now evaluated as 3 * (unsafe_mul(3, a) * c), which is safe.

3. Again in the calculation of delta1:

unsafe_mul(27, a**2)

This can overflow when a**2 is close to 2^255, but not greater. For example, this can occur
when b is very close to zero.

Code corrected:

The expression has been replaced with 27 * a**2, which is safe.

4. Lastly, the following multiplication in the calculation of sqrt_arg could potentially overflow when
delta0**2 is close to 2^255:

unsafe_mul(4, delta0**2)

Code corrected:

The expression has been replaced with 4 * delta0**2, which is safe.

 

6.6   _log2() Returns Incorrect Results
Correctness Medium Version 1 Code Corrected   

CS-TRICRYPTO-NG-009

Results of function _log2() in CurveCryptoMathOptimized3 are off by one.

Example:

In [2]: math.log2_(2**1)
Out[2]: 0

In [3]: math.log2_(2**2)
Out[3]: 1

In [4]: math.log2_(2**130)
Out[4]: 129

In [5]: math.log2_(2**255)
Out[5]: 254

In [6]: math.log2_(2**256-1)
Out[6]: 254

The only values for which a correct result is produced are x = 0, and x in [2**128, 2**129-1]

In [7]: math.log2_(2**0)
Out[7]: 0

In [8]: math.log2_(2**128)
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Out[8]: 128

In [9]: math.log2_(2**129-1)
Out[9]: 128

Code corrected:

The custom _log2() implementation has been replaced with Snekmate log_2(). The new
implementation is correct, except for the value of log2(0), which evaluates to 0 but which ought to be
undefined. In the context where _snekmate_log_2() is used, which is evaluation of the cube root,
returning 0 for log2(0) leads to the correct result.

 

6.7   Admin Can Set Unsafe Parameters Through 
commit_new_parameters()
Design Low Version 1 Specification Changed   

CS-TRICRYPTO-NG-005

The same bounds are not applied when setting parameters at initialization or with
commit_new_parameters().

mid_fee can be set down to 0 through commit_new_parameters(), but must be at least MIN_FEE in
deploy_pool().

allowed_extra_profit can be set to values between 10**16 and 10**18 through
commit_new_parameters(), but it can be at most 10**16 with deploy_pool().

Specification changed:

The MIN_FEE check has been removed from the factory. Max value for parameter
allowed_extra_profit has been increased from 10**16 to 10**18

 

6.8   Fee on remove_liquidity_one_coin() Is
Computed on Initial Balance
Correctness Low Version 1 Code Corrected   

CS-TRICRYPTO-NG-015

The fee for remove_liquidity_one_coin() is computed in _calc_withdraw_one_coin() at line
1349 as

fee: uint256 = self._fee(xp)

At this point, xp is still the unchanged balance of the pool. Removing liquidity with one coin from a
perfectly balanced pool, and making it unbalanced, will ask for mid_fee. Making an unbalanced pool
balanced by removing liquidity will ask for out_fee. This is the opposite of what should happen.

Code corrected:
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A rough but gas inexpensive calculation of the resulting balance is performed, for the purpose of
calculating the fee. The fee calculation is not exact but more accurate than in the previous version.

 

6.9   Incomplete Validation of Coins in Factory
Security Low Version 1 Code Corrected   

CS-TRICRYPTO-NG-008

Coins in a pool shouldn't be duplicated, the following line in CurveTricryptoFactory.vy asserts it:

assert _coins[0] != _coins[1] and _coins[1] != _coins[2], "Duplicate coins"

However, the case where coins[0] == coins[2] is not covered. Therefore, a pool could be
deployed with the same coin listed twice.

Code corrected:

The missing check has been included.

 

6.10   Initial Value K0_prev Recalculated
Needlessly
Design Low Version 1 Code Corrected   

CS-TRICRYPTO-NG-018

The value K0_prev is used to compute an initial value for newton_D(). In _exchange(), K0_prev is
first computed during the call to MATH.get_y(), but is discarded and the same value is recomputed a
few lines later in MATH.get_K0_prev(). This is unnecessary since the same value is returned during
both calls.

The method get_K0_prev() of CurveCryptoMathOptimized3 is redundant.

Code corrected:

The K0_prev value obtained from MATH.get_y() is now used. The get_K0_prev function was
removed.

 

6.11   Magic Number 10000 Used Instead of
Constant A_MULTIPLIER
Design Low Version 1 Code Corrected   

CS-TRICRYPTO-NG-010

Despite the constant A_MULTIPLIER being defined, code in CurveCryptoMathOptimized3.vy at
lines 737, 766, 835, 851 uses the magic number 10000 directly.

Code corrected:
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The magic numbers have been replaced with the constant.

 

6.12   Math Implementation Cannot Be Upgraded in
the Factory
Design Low Version 1 Code Corrected   

CS-TRICRYPTO-NG-011

New pool implementations can be deployed in the factory, but the math implementation can't be
changed. The event UpdatePoolImplementation is unused. A new pool implementation using
another math contract could still be added to the factory, by changing the hardcoded value of the math
contract in the pool implementation's constructor, instead of receiving it from the factory.

Code corrected:

Function set_math_implementation has been introduced in the factory so that the admin can
change the math implementations of newly deployed pools.

 

6.13   No Getter for Length of Markets List in
Factory
Design Low Version 1 Code Corrected   

CS-TRICRYPTO-NG-012

Private variable self.market_counts does not have a getter. The only way to know how many pools
have been deployed for a coin pair is to iterate find_pool_for_coins() until a zero value is returned.

Code corrected:

Public function get_market_counts has been introduced to return the market count for a token couple.

 

6.14   Pool Registered Twice in the Markets List for
Each Key
Correctness Low Version 1 Code Corrected   

CS-TRICRYPTO-NG-013

The following logic includes pools in the self.markets[key] list of the factory:

for coin_a in _coins:
    for coin_b in _coins:

        if coin_a == coin_b:
            continue

        key: uint256 = (
            convert(coin_a, uint256) ^ convert(coin_b, uint256)
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        length = self.market_counts[key]
        self.markets[key][length] = pool
        self.market_counts[key] = length + 1

Each coin pair is iterated twice, first as (A,B) and then as (B,A). The keys for the two pairs are the
same. As a consequence, each pool is included twice for a certain key.

Code corrected:

The code has been refactored so that the three token couples are now individually added.

 

6.15   Possible Precision Loss in get_y
Design Low Version 1 Code Corrected   

CS-TRICRYPTO-NG-007

In the get_y function, additional precision is added conditionally:

d0: int256 = abs(unsafe_mul(3, a) * c / b - b)  # <------------ a is smol.

divider: int256 = 0
if d0 > 10**48:
    divider = 10**30
elif d0 > 10**44:
    divider = 10**26
elif d0 > 10**40:
    divider = 10**22
elif d0 > 10**36:
    divider = 10**18
elif d0 > 10**32:
    divider = 10**14
elif d0 > 10**28:
    divider = 10**10
elif d0 > 10**24:
    divider = 10**6
elif d0 > 10**20:
    divider = 10**2
else:
    divider = 1

additional_prec: int256 = 0
if abs(a) > abs(b):
    additional_prec = abs(unsafe_div(a, b))
    a = unsafe_div(unsafe_mul(a, additional_prec), divider)
    b = unsafe_div(b * additional_prec, divider)
    c = unsafe_div(c * additional_prec, divider)
    d = unsafe_div(d * additional_prec, divider)
else:
    additional_prec = abs(unsafe_div(b, a))
    a = unsafe_div(unsafe_mul(a, additional_prec), divider)
    b = unsafe_div(b * additional_prec, divider)
    c = unsafe_div(c * additional_prec, divider)
    d = unsafe_div(d * additional_prec, divider)
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However, there are some cases where divider > additional_prec and a precision loss occurs
instead. For example, when b ≈ a, divider can still be as large as 10**18, but additional_prec
will be 1. Therefore, up to 18 decimals are removed from a, b, c and d, resulting in a precision loss.

It should be considered whether it is necessary to adjust the decimals in the case where
divider > additional_prec.

Code corrected:

The additional precision calculations were incorrect in the original version. The else branch has been
updated to the following:

else:
    additional_prec = abs(unsafe_div(b, a))
    a = unsafe_div(a / additional_prec, divider)
    b = unsafe_div(unsafe_div(b, additional_prec), divider)
    c = unsafe_div(unsafe_div(c, additional_prec), divider)
    d = unsafe_div(unsafe_div(d, additional_prec), divider)

Curve also provided an explanation for the precision adjustment:

The idea behind this is that a is always high-precision constant 10**36 / 27 while b, c, and d may
have excessive or insufficient precision, so we compare b to a and add or remove precision via
additional_prec. But we should also take into account not only difference between a and other
coefficients, but their value by themselves (10**36 precision will lead to overflow if coin values are
high), so we use divider to reduce precision and avoid overflow. The
divider > additional_prec case is fine unless it produces vulnerability.

 

6.16   Redundant Asserts in Call to _newton_y()
Design Low Version 1 Code Corrected   

CS-TRICRYPTO-NG-006

The arguments of get_y() are checked to be in a reasonable range through the following asserts:

# Safety checks
assert _ANN > MIN_A - 1 and _ANN < MAX_A + 1, "dev: unsafe values A"
assert _gamma > MIN_GAMMA - 1 and _gamma < MAX_GAMMA + 1, "dev: unsafe values gamma"
assert _D > 10**17 - 1 and _D < 10**15 * 10**18 + 1, "dev: unsafe values D"

The same checks are duplicated when entering the internal function _newton_y(), which is only called
in the body of get_y()

Code corrected:

The redundant asserts were removed from _newton_y().
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7   Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1   Funds Could Be Transferred Before Callback
Note Version 1 

When using exchange_extended(), a callback to the caller is executed to transfer the inbound
exchange amount. The callback is executed before the outgoing tokens are received by the user.
Executing the callback after the outgoing tokens have been received would allow more flexible use
cases, by acting as a flashloan.
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