
0

Curve lending

15-01-2024 - 02-02-2024

1

Table of contents

1. Project Brief 3

2. Finding Severity breakdown 4

3. Summary of findings 5

4. Conclusion 5

5. Findings report 6

Dilution of the depositor's share using callback functionality 6Critical

Incorrect implementation of Vault contract renders a set of crucial functions in Controller useless 8High

All collected fees are stuck in AMM 9

Incorrect NewVault event parameter used in emit 9

Incorrect pricePerShare() calculation 10

Rate updating when interacting with Vault 10

Medium

Excessive conditions 10

Redundant check for N 10

Inconsistency in withdraw()/redeem() 11

Log2 implementation has bad accuracy 11

Importing a non-existent function 11

Sanity checks for pricePerShare 12

State Manipulation Vulnerability in Controller Contract Functions 13

Informational

2

Gas saving on set_rates() 14

Minor gas optimisation 14

Comments typos 14

Precision loss in single loan repayment 15

Informational

3

1. Project Brief

Curve

Curve lending

15-01-2024 - 02-02-2024

5a939431084dcb1e7fb85c19c883048903a23beb

d64d55877730e653ad1f0ea32c694a232c04ac53

Short Overview

Curve lending allows the creation of permissionless lending/borrowing markets to borrow crvUSD against any token, or to

borrow any token against crvUSD in an isolated mode, powered by LLAMMA for soft-liquidations. All markets are isolated from

each other and do not intertwine.

The borrowable liquidity is provided by willing lenders through Vaults, which are ERC4626 contracts with some additional

methods for convenience.

Project Scope

The audit covered the following files:

Vault.vy OneWayLendingFactory.vy SemilogMonetaryPolicy.vy

CryptoFromPool.vy Controller.vy

Title Description

Client

Project name

Timeline

Initial commit

Final commit

https://github.com/curvefi/curve-stablecoin/blob/5a939431084dcb1e7fb85c19c883048903a23beb/contracts/lending/Vault.vy
https://github.com/curvefi/curve-stablecoin/blob/5a939431084dcb1e7fb85c19c883048903a23beb/contracts/lending/OneWayLendingFactory.vy
https://github.com/curvefi/curve-stablecoin/blob/5a939431084dcb1e7fb85c19c883048903a23beb/contracts/mpolicies/SemilogMonetaryPolicy.vy
https://github.com/curvefi/curve-stablecoin/blob/5a939431084dcb1e7fb85c19c883048903a23beb/contracts/price_oracles/CryptoFromPool.vy
https://github.com/curvefi/curve-stablecoin/blob/5a939431084dcb1e7fb85c19c883048903a23beb/contracts/Controller.vy

4

2. Finding Severity breakdown

All vulnerabilities discovered during the audit are classified based on their potential severity and have the following

classification:

Bugs leading to assets theft, fund access locking, or any other loss of funds to be transferred to any

party.

Bugs that can trigger a contract failure. Further recovery is possible only by manual modification of

the contract state or replacement.

Bugs that can break the intended contract logic or expose it to DoS attacks, but do not cause direct

loss of funds.

Bugs that do not have a significant immediate impact and could be easily fixed.

Based on the feedback received from the Customer regarding the list of findings discovered by the Contractor, they are

assigned the following statuses:

Recommended fixes have been made to the project code and no longer affect its security.

The Customer is aware of the finding. Recommendations for the finding are planned to be resolved

in the future.

Severity Description

Critical

High

Medium

Informational

Status Description

Fixed

Acknowledged

5

3. Summary of findings

1 (1 fixed, 0 acknowledged)

1 (1 fixed, 0 acknowledged)

4 (4 fixed, 0 acknowledged)

11 (8 fixed, 3 acknowledged)

17 (14 fixed, 3 acknowledged)

4. Conclusion

During the audit of the codebase, 17 issues were found in total:

1 critical severity issues (1 fixed)

1 high severity issues (1 fixed)

4 medium severity issues (4 fixed)

11 informational severity issues (8 fixed, 3 acknowledged)

The final reviewed commit is d64d55877730e653ad1f0ea32c694a232c04ac53

Severity # of Findings

Critical

High

Medium

Informational

Total

https://github.com/curvefi/curve-stablecoin/blob/d64d55877730e653ad1f0ea32c694a232c04ac53
https://github.com/curvefi/curve-stablecoin/blob/d64d55877730e653ad1f0ea32c694a232c04ac53
https://github.com/curvefi/curve-stablecoin/blob/d64d55877730e653ad1f0ea32c694a232c04ac53

6

5. Findings report

CRITICAL-01 Dilution of the depositor's share using callback functionality Fixed at 7b823a

Description

In Vault, convertion to shares depends on totalSupply and _total_assets. _total_assets consists of balance of Controller

contract and its total_debt. Ideally, when there is no interaction with Vault, if balance of Controller decreases, then

total_debt should increase and vice versa. These actions should happen atomically. But, in function create_loan_extended()

at Line 631 there is a transfer of BORROWED_TOKEN, and after callback actual loan is created and total_debt increases.

These leads to underestimation of Vault's shares and inside call to callbacker, it is possible to buy shares at low price,

thereby diluting shares of other depositors.

Callbacker contract should have enough collateral to create position

or may take flashloan and inside it call create_loan() + repay()

def create_loan_extended(...):

 self.transfer(BORROWED_TOKEN, callbacker, debt)

 # ^-- Here balance of Controller contract decrease, but total_debt stays the same,

 # leading to lower _total_asset in Vault

 more_collateral: uint256 = self.execute_callback(

 callbacker, CALLBACK_DEPOSIT, msg.sender, 0, collateral, debt, callback_args).collateral

 # ^-- in callback we make deposit in Vault, using already transfered borrow tokens

 self._create_loan(collateral + more_collateral, debt, N, False) # <-- here actual loan is created and total_debt value is

updated

 self.transferFrom(COLLATERAL_TOKEN, msg.sender, AMM.address, collateral)

 self.transferFrom(COLLATERAL_TOKEN, callbacker, AMM.address, more_collateral)

To repay debt and get collateral back attacker makea a withdraw from Vault and calls repay() function. After all these actions

attacker gets back collateral and still have shares of Vault.

The PoC script was handed over to the customer.

Same issue:

Via function borrow_more_extended() - same attack

Via function _liquidate() - before callback BORROWED_TOKEN is transferred to Controller's balance, so price of share

is increased. So, attacker, before making liquidation, can buy shares at low price, and them sell them during callback.

Recommendation

It is recommended to keep operations atomic. Radical way of solving that is to disable extended functions to prevent

external calls. Another way is to have invariant from Vault to check in execute_callback() function, but this breakward

compatibility with classic Controller. E.g. totalSupply can be checked to remain the same.

https://github.com/curvefi/curve-stablecoin/commit/7b823a858f3d4c8e4f751fae8e09a288b3181af6
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/lending/Vault.vy#L265
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/lending/Vault.vy#L265
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/lending/Vault.vy#L265
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L620
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L620
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L620
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L631
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L781
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L740
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L740
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L740
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L1029
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L1029
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L1029
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L544
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L544
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L544

7

band_x: uint256 = AMM.bands_x(data.active_band)

band_y: uint256 = AMM.bands_y(data.active_band)

vault_total_supply: uint256 = FACTORY.totalSupply()

^-- In lending FACTORY is actually VAULT, factory interfaces should be changed

or FACTORY should be replaced with separate VAULT variable

Callback

response: Bytes[64] = raw_call(

 callbacker,

 concat(callback_sig, _abi_encode(user, stablecoins, collateral, debt, callback_args)),

 max_outsize=64

)

data.stablecoins = convert(slice(response, 0, 32), uint256)

data.collateral = convert(slice(response, 32, 32), uint256)

Checks after callback

assert vault_total_supply == FACTORY.totalSupply()

assert data.active_band == AMM.active_band()

Client's comments

There was a check_lock() method introduced in Controller. It reverts if reading it reenters the Controller. This method is

invoked from Vault, so Vault is not working when Controller is currently running

8

HIGH-

01

Incorrect implementation of Vault contract renders a set of crucial functions in

Controller useless

Fixed at

1255bc

Description

The vulnerability arises from the Controller contract, deployed by the Vault contract, incorrectly assuming the presence of

admin and fee_receiver variables in the Vault (set as its FACTORY). These variables, crucial for several functions in the

Controller, are absent in the Vault contract. Consequently, the Controller attempts to access these variables on the Vault

contract lead to transaction reversion.

The identified issue significantly impacts the Controller contract's functionality, particularly affecting critical functions

dependent on the admin variable. Key functions such as

set_amm_fee()

set_monetary_policy()

set_borrowing_discounts()

are rendered inoperative. These functions are essential for adapting to market dynamics, and their malfunction results in a

considerable loss of the protocol's adaptability and responsiveness.

Furthermore, the set_callback() and set_amm_admin_fee() functions, though used less frequently, are also impaired. This

loss of functionality, while not as frequent, still represents a notable deficiency in the contract's intended capabilities.

Lines:

Controller.vy#L1253

Controller.vy#L1260

Controller.vy#L1272

Controller.vy#L1291

Controller.vy#L1306

Recommendation

If maintaining the deployment of the Controller through the Vault is a deliberate architectural choice, we recommend

modifying the Vault contract to include the admin variable, along with any associated functionalities expected by the

Controller. This adaptation should ensure that the Vault contract is fully equipped to support the Controller's operations.

Client's comments

Added factory and admin() method to the Vault. fee_receiver is not needed since lending is with zero admin fee by

design, so it is supposed to revert

https://github.com/curvefi/curve-stablecoin/commit/1255bc62a537b738d69846532fd25a9d93523a9f
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L1253
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L1260
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L1272
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L1291
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L1306

9

MEDIUM-01 All collected fees are stuck in AMM Fixed at 671ac3

Description

As it said in docs: "all the fees will go to the vault depositors."

But in fact, all collected fees are stored in the AMM contract, so there is no opportunity to withdraw them on the Controller

contract and make it an incentive for liquidity providers. Currently, all collected fees go to borrowers.

Example from calc_swap_out():

x_dest: uint256 = (unsafe_div(Inv, g) - f) - x

dx: uint256 = unsafe_div(x_dest * antifee, 10**18)

if dx >= in_amount_left:

 # This is the last band

 x_dest = unsafe_div(in_amount_left * 10**18, antifee) # LESS than in_amount_left

 # ^-- (in_amount_left - x_dest) - all fees

 out.last_tick_j = min(Inv / (f + (x + x_dest)) - g + 1, y) # Should be always >= 0

 x_dest = unsafe_div(unsafe_sub(in_amount_left, x_dest) * admin_fee, 10**18) # abs admin fee now

 # ^-- admin fee. If admin_fee == 0, then x_dest == 0

 x += in_amount_left # x is precise after this

 # Round down the output

 out.out_amount += y - out.last_tick_j

 out.ticks_in[j] = x - x_dest

 # ^-- fees excluding admin fees stay in the tick

 out.in_amount = in_amount

 out.admin_fee = unsafe_add(out.admin_fee, x_dest)

 # ^-- add admin fee

 break

After all, admin fees are collected in two tokens. But in Vault only one token is used to determine APR and pricePerShare.

Recommendation

It is recommended to comment if fees should stay in AMM, then they would go to borrowers. In that case docs should be

changed. If trading fees should go to depositors, then ADMIN_FEE should be changed to 100% for collecting them. To make it

function collect_fees() may be used and in Vault contract fee_receiver should be presented and set to Controller address.

Also during fee collection all tokens should be swap for BORROWED_TOKEN.

MEDIUM-02 Incorrect NewVault event parameter used in emit Fixed at 2f2b94

Description

Zero constant is used (instead of id) in the NewVault event emit. This will confuse the UI or offchain monitoring tools. It can

be fixed by updating unused storage variables in the OneWayLendingFactory.

This issue also applies for TwoWayLendingFactory.

Recommendation

We recommend replacing zero constant with n_vaults.

+self.vaults[self.n_vaults] == vault

+log NewVault(self.n_vaults, collateral_token, borrowed_token, vault.address, controller, amm, price_oracle,

monetary_policy)

+self.n_vaults += 1

-log NewVault(0, collateral_token, borrowed_token, vault.address, controller, amm, price_oracle, monetary_policy)

https://github.com/curvefi/curve-stablecoin/commit/671ac32755b295147b75ec4643236f012e4ce96a
https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/doc/lending/Lending.md?plain=1#L25
https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/contracts/AMM.vy#L899
https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/contracts/AMM.vy#L899
https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/contracts/AMM.vy#L899
https://github.com/curvefi/curve-stablecoin/commit/2f2b94b446d7a1c76fbc94fb7d125af7f126d71c
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/lending/OneWayLendingFactory.vy#L155
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/lending/OneWayLendingFactory.vy#L78
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/lending/TwoWayLendingFactory.vy#L162

10

MEDIUM-03 Incorrect pricePerShare() calculation Fixed at 132cf6

Description

The Vault contract an has external pricePerShare() function in which totalSupply is counted without DEAD_SHARES.

Related _convert_to_shares() and _convert_to_assets() functions are calculated with DEAD_SHARES.

This may lead to an incorrect calculation of pricePerShare() for a small value of totalSupply(~ 10^3).

When using pricePerShare() along with the oracle, the price will be calculated incorrectly. This can lead to further incorrect

calculations of functions inside AMM and Controller.

In addition, since related functions take into account rounding when buying/selling shares, this function also needs such

functionality.

Recommendation

We recommend changing pricePerShare() calculation with DEAD_SHARES and add the possibility of rounding up and down.

MEDIUM-04 Rate updating when interacting with Vault Fixed at 6067f5

Description

Interactions with Vault, such as deposits and withdrawals, affect protocol's utilization. Rate is calculated in

SemilogMonetaryPolicy and used in AMM. But function _update_rates() only updates internal state of Monetary Policy and

doesn't trigger changes in AMM's rate.

This leads to a discrepancy between the necessary rate, based on actual utilization, and rate in AMM.

E.g. when withdrawing from Vault, utilization increases, so rate should also increase. But in AMM, rate remains unchanged

and borrowers are charged less interest, until there is no interaction with Controller.

Recommendation

It is recommended to update rate in AMM after every action in Vault which leads to change in utilization (deposit, withdraw).

INFORMATIONAL-01 Excessive conditions Fixed at 740a92

Description

The OneWayLendingFactory contract has internal _create function which contains an assert to check the correctness of

max_rate and min_rate. To check whether two sorted values belong within the interval, 3 conditions are sufficient instead of

5.

Also, the set_default_rates function / SemilogMonetaryPolicy's constructor have the same problem.

Recommendation

We recommend using assert conditions like this:

min_rate <= max_rate and min_rate >= MIN_RATE and max_rate <= MAX_RATE

INFORMATIONAL-02 Redundant check for N Fixed at ba450e

Description

In OneWayLendingFactory.vy#L235 there is a check that N > 1 but if N is equal to 1, then one of collateral_ix and

borrowed_ix is equal to 100. So it will be reverted earlier.

Recommendation

We recommend removing this check.

https://github.com/curvefi/curve-stablecoin/commit/132cf68fd90b65dc5e8462713aa4e6d8ad38266e
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/lending/Vault.vy#L283
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/lending/Vault.vy#L283
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/lending/Vault.vy#L283
https://github.com/curvefi/curve-stablecoin/commit/6067f5a476b801a8ae953c03295b89d8e94ebe73
https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/contracts/lending/Vault.vy#L226
https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/contracts/lending/Vault.vy#L226
https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/contracts/lending/Vault.vy#L226
https://github.com/curvefi/curve-stablecoin/commit/740a9298a120d7a12a71aa32db815edf8656d0a3
https://github.com/curvefi/curve-stablecoin/blob/f80ef20a2f18038fbc1456edb263d231df1f7bc9/contracts/lending/OneWayLendingFactory.vy#L137
https://github.com/curvefi/curve-stablecoin/blob/f80ef20a2f18038fbc1456edb263d231df1f7bc9/contracts/lending/OneWayLendingFactory.vy#L286
https://github.com/curvefi/curve-stablecoin/blob/f80ef20a2f18038fbc1456edb263d231df1f7bc9/contracts/lending/OneWayLendingFactory.vy#L286
https://github.com/curvefi/curve-stablecoin/blob/f80ef20a2f18038fbc1456edb263d231df1f7bc9/contracts/lending/OneWayLendingFactory.vy#L286
https://github.com/curvefi/curve-stablecoin/commit/ba450e69d100c9e6510b8b6cb1f7f33dd75537be
https://github.com/curvefi/curve-stablecoin/blob/702b94e909ac5dcc0f3568af3c616ad31a3efd72/contracts/lending/OneWayLendingFactory.vy#L235

11

INFORMATIONAL-03 Inconsistency in withdraw()/redeem() Fixed at f32329

Description

In the redeem() function we have a sequence as described in OZ implementation. First, we do burn, second - transfer. But in

withdraw() token transfer is performed first.

Recommendation

We recommend making related functions similar.

INFORMATIONAL-04 Log2 implementation has bad accuracy Fixed at 711651

Description

The Controller.vy contract has log2 implementation. It is assumed that the calculation is accurate to 10 decimals. At the

same time, 18 decimals are needed to accurately calculate LOG2_A_RATIO:

@external

def __init__(

 collateral_token: address,

 monetary_policy: address,

 loan_discount: uint256,

 liquidation_discount: uint256,

 amm: address):

 # ...

 AMM = LLAMMA(amm)

 _A: uint256 = LLAMMA(amm).A()

 A = _A

 Aminus1 = unsafe_sub(_A, 1)

 LOG2_A_RATIO = self.log2(unsafe_div(_A * 10**18, unsafe_sub(_A, 1))) # <-- 18 decimals

 # ...

The log2 function calculates a logarithm smaller in magnitude than it actually is (The difference is on average 9 decimal

places. For example 14499569660983974 vs. 14499569695115170 for Vault accuracy, with A = 100).

Recommendation

We recommend increasing the accuracy of calculations, as in Vault implementation.

INFORMATIONAL-05 Importing a non-existent function Fixed at 60f556

Description

The Controller contract imports the LLAMMA interface. The imported set_price_oracle function does not exist in the AMM

contract and is not used anywhere in the Controller contract.

Recommendation

We recommend removing this function from the interface import.

https://github.com/curvefi/curve-stablecoin/commit/f3232976017af78535faa074570728426c25ca2c
https://github.com/curvefi/curve-stablecoin/blob/702b94e909ac5dcc0f3568af3c616ad31a3efd72/contracts/lending/Vault.vy#L504
https://github.com/curvefi/curve-stablecoin/blob/702b94e909ac5dcc0f3568af3c616ad31a3efd72/contracts/lending/Vault.vy#L504
https://github.com/curvefi/curve-stablecoin/blob/702b94e909ac5dcc0f3568af3c616ad31a3efd72/contracts/lending/Vault.vy#L504
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/0b343abcb5cecc42c40b95565cb7f5affb542727/contracts/token/ERC20/extensions/ERC4626.sol#L271
https://github.com/curvefi/curve-stablecoin/blob/702b94e909ac5dcc0f3568af3c616ad31a3efd72/contracts/lending/Vault.vy#L453
https://github.com/curvefi/curve-stablecoin/blob/702b94e909ac5dcc0f3568af3c616ad31a3efd72/contracts/lending/Vault.vy#L453
https://github.com/curvefi/curve-stablecoin/blob/702b94e909ac5dcc0f3568af3c616ad31a3efd72/contracts/lending/Vault.vy#L453
https://github.com/curvefi/curve-stablecoin/commit/711651d8394a358cf009427a51bb0f35d7cd833b
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L224
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L224
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L224
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/lending/Vault.vy#L123
https://github.com/curvefi/curve-stablecoin/commit/60f556050e0d84f0cb0710a807f35539182ff694
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L27
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L27
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/Controller.vy#L27

12

INFORMATIONAL-06 Sanity checks for pricePerShare Fixed at c2382b

Description

pricePerShare is calculated based on _total_assets and totalSupply. Attacker can manipulate _total_assets by simply

transferring tokens on Controller contract or by making more complex actions. Contracts, that uses this function should have

sanity checks, because pricePerShare is vulnerable to manipulations and situations when

10**18 * self.precision * self._total_assets() is less than totalSupply are possible and could lead to incorrect price of share.

Recommendation

It is recommended to add sanity check for the case when pricePerShare equals zero (e.g. reverting an execution) and

additional checks in contracts that uses this function to mitigate manipulations.

Client's comments

This is actually intended behavior: pricePerShare is measured in tokens normalized to 18 decimals. This behavior is

used in two-way vaults internally. Added tests around pricePerShare()

https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/lending/Vault.vy#L283
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/lending/Vault.vy#L283
https://github.com/curvefi/curve-stablecoin/blob/2c783b052c208768fdc96a0a179b8382f859f8a0/contracts/lending/Vault.vy#L283
https://github.com/curvefi/curve-stablecoin/commit/c2382b120b65e0f4b83e512b6700331bef4bfdbc

13

INFORMATIONAL-07 State Manipulation Vulnerability in Controller Contract Functions Acknowledged

Description

An analysis of the Controller contract's execution flow, particularly during _create_loan_extended and similar functions,

reveals a vulnerability wherein external calls can manipulate the contract's state. This manipulation leads to a discrepancy

between the Controller's recorded total_debt and the actual borrow_token.balanceOf(controller.address), due to token

balance modifications preceding these calls without a concurrent total_debt update. This issue directly affects several view

functions across the Vault, Controller, and SemilogMonetaryPolicy contracts, which rely on the Controller's state for

accurate information.

Vault:

_total_assets(), which impacts

lend_apr(),

totalAssets(),

pricePerShare(),

convertToShares(),

convertToAssets()

and those reliant on borrowed_token.balanceOf(self.controller.address), such as

maxWithdraw(),

previewWithdraw(),

maxRedeem(), and

previewRedeem().

Controller:

total_debt() - external

max_borrowable()

SemilogMonetaryPolicy:

calculate_rate() which affects:

rate_write()

rate()

These functions are susceptible to returning inaccurate values, as they can be influenced during the callback phase of

external calls.

This vulnerability poses a risk by allowing key view functions to be manipulated, leading to incorrect outputs. The issue

extends to third-party protocols that might potentially rely on these functions, amplifying the vulnerability across the

ecosystem.

Recommendation

1. State Synchronization: Ensure synchronization between the token balance and total_debt in the Controller before

executing external calls. This could involve updating the total_debt concurrently with the token transfer, thus

maintaining consistent state information.

2. Exercise Caution in Critical Operations: Protocols should exercise caution when incorporating the affected functions

into critical parts of the system. It is recommended to implement thorough sanity checks before and after interacting

with these functions to ensure the data integrity and consistency of the inputs and outputs.

Client's comments

What is important is to check that this is not coming from the callback where total_debt is in the middle of the update.

For that, check_lock() method is implemented in Controller. If someone donates to the controller - it is a legitimate

donation which does pump the share price.

14

INFORMATIONAL-08 Gas saving on set_rates() Fixed at 82eef6

Description

The SemilogMonetaryPolicy contract has an external set_rates() function which sets new maximum and minimum

thresholds for rates. If one of the boundaries does not change, the logarithm will be calculated again, which is gas-

expensive.

Recommendation

We recommend adding a check for the equality of new rates with old ones.

INFORMATIONAL-09 Minor gas optimisation Acknowledged

Description

Line CryptoFromPool.vy#41 is redundant, since this temporary variable p is used only one time

Recommendation

We recommend removing it like this

if COLLATERAL_IX > 0:

 p_collateral = POOL.price_oracle()

else:

 p_borrowed = POOL.price_oracle()

INFORMATIONAL-10 Comments typos Fixed at 886b08

Description

Typo in set_admin() description on this line.

Typo in ln_int() comment on this line. The argument of math.log2 should be 10**18.

Recommendation

We recommend fixing these typos

https://github.com/curvefi/curve-stablecoin/commit/82eef67f4a4b37f052b8c962581127840b24e405
https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/contracts/mpolicies/SemilogMonetaryPolicy.vy#L168
https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/contracts/price_oracles/CryptoFromPool.vy#L41
https://github.com/curvefi/curve-stablecoin/commit/886b0897a40fa6e6f0b6fdc219ddc14d07ce84a6
https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/contracts/mpolicies/SemilogMonetaryPolicy.vy#L177
https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/contracts/mpolicies/SemilogMonetaryPolicy.vy#L118

15

INFORMATIONAL-11 Precision loss in single loan repayment Acknowledged

Description

In the Controller._debt function, a mechanism is implemented to mitigate precision loss by rounding up the debt calculation.

However, this mechanism incorrectly assumes that rounding is only necessary when there are multiple loans, leading to

potential precision loss when there is only one loan.

debt: uint256 = loan.initial_debt * rate_mul

if debt % loan.rate_mul > 0:

 if self.n_loans > 1:

 debt += loan.rate_mul

debt /= loan.rate_mul

Recommendation

It is recommended to adjust the conditional logic to ensure that the debt calculation always rounds up.

Client's comments

This is by design. If we do not do it - it will be impossible to repay all the minted debt in case of a stablecoin. So let's call

it a design decision: if user is the only one left with the debt - his debt is rounded down

https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/contracts/Controller.vy#L303
https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/contracts/Controller.vy#L303
https://github.com/curvefi/curve-stablecoin/blob/6314e0ee93926e058019965f2966607937a52ffe/contracts/Controller.vy#L303

0

