TwoCrypto Pool
A Twocrypto-NG pool consists of two non-pegged assets. The LP token is a ERC-20 token integrated directly into the liquidity pool.
Liquidity Pool (LP) Token
The LP token is directly integrated into the exchange contract. Pool and LP token share the same address.
The token has the regular ERC-20 methods, which will not be further documented.
In Twocrypto-NG pools, price scaling and fee parameters are bundled and stored as a single unsigned integer. This consolidation reduces storage read and write operations, leading to more cost-efficient calls.
pack
This internal function packs two or three integers into a single uint256.
```vyper
@pure
@internal
def _pack_2(p1: uint256, p2: uint256) -> uint256:
return p1 | (p2 << 128)
@internal
@pure
def _pack_3(x: uint256[3]) -> uint256:
"""
@notice Packs 3 integers with values <= 10**18 into a uint256
@param x The uint256[3] to pack
@return uint256 Integer with packed values
"""
return (x[0] << 128) | (x[1] << 64) | x[2]
```
unpack
This internal function unpacks a single uin256 into two or three integers.
```vyper
@pure
@internal
def _unpack_2(packed: uint256) -> uint256[2]:
return [packed & (2**128 - 1), packed >> 128]
@internal
@pure
def _unpack_3(_packed: uint256) -> uint256[3]:
"""
@notice Unpacks a uint256 into 3 integers (values must be <= 10**18)
@param val The uint256 to unpack
@return uint256[3] A list of length 3 with unpacked integers
"""
return [
(_packed >> 128) & 18446744073709551615,
(_packed >> 64) & 18446744073709551615,
_packed & 18446744073709551615,
]
```
The AMM contract utilizes two internal functions to transfer coins in and out of the pool e.g. when exchanging tokens or adding/removing liquidity:
Token transfer into the AMM:
_transfer_in(_coin_idx: uint256, _dx: uint256, sender: address, expect_optimistic_transfer: bool) -> uint256:
Internal function to transfer tokens into the AMM, called by exchange
, exchange_received
or add_liquidity
.
Input | Type | Description |
---|---|---|
_coin_idx | int128 | Index of the token to transfer in. |
_dx | uint256 | Amount to transfer in. |
sender | address | Address to transfer coins from. |
expect_optimistic_transfer | bool | True if the contract expects an optimistic coin transfer. |
expect_optimistic_transfer
is only True
when using the exchange_received
function.
balances: public(uint256[N_COINS])
@internal
def _transfer_in(
_coin_idx: uint256,
_dx: uint256,
sender: address,
expect_optimistic_transfer: bool,
) -> uint256:
"""
@notice Transfers `_coin` from `sender` to `self` and calls `callback_sig`
if it is not empty.
@params _coin_idx uint256 Index of the coin to transfer in.
@params dx amount of `_coin` to transfer into the pool.
@params sender address to transfer `_coin` from.
@params expect_optimistic_transfer bool True if pool expects user to transfer.
This is only enabled for exchange_received.
@return The amount of tokens received.
"""
coin_balance: uint256 = ERC20(coins[_coin_idx]).balanceOf(self)
if expect_optimistic_transfer: # Only enabled in exchange_received:
# it expects the caller of exchange_received to have sent tokens to
# the pool before calling this method.
# If someone donates extra tokens to the contract: do not acknowledge.
# We only want to know if there are dx amount of tokens. Anything extra,
# we ignore. This is why we need to check if received_amounts (which
# accounts for coin balances of the contract) is atleast dx.
# If we checked for received_amounts == dx, an extra transfer without a
# call to exchange_received will break the method.
dx: uint256 = coin_balance - self.balances[_coin_idx]
assert dx >= _dx # dev: user didn't give us coins
# Adjust balances
self.balances[_coin_idx] += dx
return dx
# ----------------------------------------------- ERC20 transferFrom flow.
# EXTERNAL CALL
assert ERC20(coins[_coin_idx]).transferFrom(
sender,
self,
_dx,
default_return_value=True
)
dx: uint256 = ERC20(coins[_coin_idx]).balanceOf(self) - coin_balance
self.balances[_coin_idx] += dx
return dx
Token transfer out of the AMM:
_transfer_out(_coin_idx: int128, _amount: uint256, receiver: address):
Internal function to transfer tokens out of the AMM, called by the remove_liquidity
, remove_liquidity_one
, _claim_admin_fees
, and _exchange
methods.
Input | Type | Description |
---|---|---|
_coin_idx | int128 | Index of the token to transfer out. |
_amount | uint256 | Amount to transfer out. |
receiver | address | Address to send the tokens to. |
balances: public(uint256[N_COINS])
@internal
def _transfer_out(_coin_idx: uint256, _amount: uint256, receiver: address):
"""
@notice Transfer a single token from the pool to receiver.
@dev This function is called by `remove_liquidity` and
`remove_liquidity_one`, `_claim_admin_fees` and `_exchange` methods.
@params _coin_idx uint256 Index of the token to transfer out
@params _amount Amount of token to transfer out
@params receiver Address to send the tokens to
"""
# Adjust balances before handling transfers:
self.balances[_coin_idx] -= _amount
# EXTERNAL CALL
assert ERC20(coins[_coin_idx]).transfer(
receiver,
_amount,
default_return_value=True
)
Exchange Methods¶
The contract offers two different ways to exchange tokens:
- A regular
exchange
method. - A novel
exchange_received
method, which swaps tokens based on the "internal balances" of the pool. This method is of great use for aggregators, as it does not require token approval of the pool, which eliminates certain smart contract risks and can remove one redundant ERC-20 transfer. More here.
exchange
¶
TwoCrypto.exchange(i: uint256, j: uint256, dx: uint256, min_dy: uint256, receiver: address = msg.sender) -> uint256:
Function to exchange dx
amount of coin i
for coin j
and receive a minimum amount of min_dy
. Charged fee at current states is Pool.fee()
.
Returns: amount of output coin j
received (uint256
).
Emits: TokenExchange
Input | Type | Description |
---|---|---|
i | uint256 | Index value for the input coin. |
j | uint256 | Index value for the output coin. |
dx | uint256 | Amount of input coin being swapped in. |
min_dy | uint256 | Minimum amount of output coin to receive. |
receiver | address | Address to send output coin to. Defaults to msg.sender . |
Source code
event TokenExchange:
buyer: indexed(address)
sold_id: uint256
tokens_sold: uint256
bought_id: uint256
tokens_bought: uint256
fee: uint256
packed_price_scale: uint256
@external
@nonreentrant("lock")
def exchange(
i: uint256,
j: uint256,
dx: uint256,
min_dy: uint256,
receiver: address = msg.sender
) -> uint256:
"""
@notice Exchange using wrapped native token by default
@param i Index value for the input coin
@param j Index value for the output coin
@param dx Amount of input coin being swapped in
@param min_dy Minimum amount of output coin to receive
@param receiver Address to send the output coin to. Default is msg.sender
@return uint256 Amount of tokens at index j received by the `receiver
"""
# _transfer_in updates self.balances here:
dx_received: uint256 = self._transfer_in(
i,
dx,
msg.sender,
False
)
# No ERC20 token transfers occur here:
out: uint256[3] = self._exchange(
i,
j,
dx_received,
min_dy,
)
# _transfer_out updates self.balances here. Update to state occurs before
# external calls:
self._transfer_out(j, out[0], receiver)
# log:
log TokenExchange(msg.sender, i, dx_received, j, out[0], out[1], out[2])
return out[0]
@internal
def _exchange(
i: uint256,
j: uint256,
dx_received: uint256,
min_dy: uint256,
) -> uint256[3]:
assert i != j # dev: coin index out of range
assert dx_received > 0 # dev: do not exchange 0 coins
A_gamma: uint256[2] = self._A_gamma()
xp: uint256[N_COINS] = self.balances
dy: uint256 = 0
y: uint256 = xp[j]
x0: uint256 = xp[i] - dx_received # old xp[i]
price_scale: uint256 = self.cached_price_scale
xp = [
xp[0] * PRECISIONS[0],
unsafe_div(xp[1] * price_scale * PRECISIONS[1], PRECISION)
]
# ----------- Update invariant if A, gamma are undergoing ramps ---------
t: uint256 = self.future_A_gamma_time
if t > block.timestamp:
x0 *= PRECISIONS[i]
if i > 0:
x0 = unsafe_div(x0 * price_scale, PRECISION)
x1: uint256 = xp[i] # <------------------ Back up old value in xp ...
xp[i] = x0 # |
self.D = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0) # |
xp[i] = x1 # <-------------------------------------- ... and restore.
# ----------------------- Calculate dy and fees --------------------------
D: uint256 = self.D
y_out: uint256[2] = MATH.get_y(A_gamma[0], A_gamma[1], xp, D, j)
dy = xp[j] - y_out[0]
xp[j] -= dy
dy -= 1
if j > 0:
dy = dy * PRECISION / price_scale
dy /= PRECISIONS[j]
fee: uint256 = unsafe_div(self._fee(xp) * dy, 10**10)
dy -= fee # <--------------------- Subtract fee from the outgoing amount.
assert dy >= min_dy, "Slippage"
y -= dy
y *= PRECISIONS[j]
if j > 0:
y = unsafe_div(y * price_scale, PRECISION)
xp[j] = y # <------------------------------------------------- Update xp.
# ------ Tweak price_scale with good initial guess for newton_D ----------
price_scale = self.tweak_price(A_gamma, xp, 0, y_out[1])
return [dy, fee, price_scale]
@external
@view
def newton_D(ANN: uint256, gamma: uint256, x_unsorted: uint256[N_COINS], K0_prev: uint256 = 0) -> uint256:
"""
Finding the invariant using Newton method.
ANN is higher by the factor A_MULTIPLIER
ANN is already A * N**N
"""
# Safety checks
assert ANN > MIN_A - 1 and ANN < MAX_A + 1 # dev: unsafe values A
assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
# Initial value of invariant D is that for constant-product invariant
x: uint256[N_COINS] = x_unsorted
if x[0] < x[1]:
x = [x_unsorted[1], x_unsorted[0]]
assert x[0] > 10**9 - 1 and x[0] < 10**15 * 10**18 + 1 # dev: unsafe values x[0]
assert unsafe_div(x[1] * 10**18, x[0]) > 10**14 - 1 # dev: unsafe values x[i] (input)
S: uint256 = unsafe_add(x[0], x[1]) # can unsafe add here because we checked x[0] bounds
D: uint256 = 0
if K0_prev == 0:
D = N_COINS * isqrt(unsafe_mul(x[0], x[1]))
else:
# D = isqrt(x[0] * x[1] * 4 / K0_prev * 10**18)
D = isqrt(unsafe_mul(unsafe_div(unsafe_mul(unsafe_mul(4, x[0]), x[1]), K0_prev), 10**18))
if S < D:
D = S
__g1k0: uint256 = gamma + 10**18
diff: uint256 = 0
for i in range(255):
D_prev: uint256 = D
assert D > 0
# Unsafe division by D and D_prev is now safe
# K0: uint256 = 10**18
# for _x in x:
# K0 = K0 * _x * N_COINS / D
# collapsed for 2 coins
K0: uint256 = unsafe_div(unsafe_div((10**18 * N_COINS**2) * x[0], D) * x[1], D)
_g1k0: uint256 = __g1k0
if _g1k0 > K0:
_g1k0 = unsafe_add(unsafe_sub(_g1k0, K0), 1) # > 0
else:
_g1k0 = unsafe_add(unsafe_sub(K0, _g1k0), 1) # > 0
# D / (A * N**N) * _g1k0**2 / gamma**2
mul1: uint256 = unsafe_div(unsafe_div(unsafe_div(10**18 * D, gamma) * _g1k0, gamma) * _g1k0 * A_MULTIPLIER, ANN)
# 2*N*K0 / _g1k0
mul2: uint256 = unsafe_div(((2 * 10**18) * N_COINS) * K0, _g1k0)
# calculate neg_fprime. here K0 > 0 is being validated (safediv).
neg_fprime: uint256 = (S + unsafe_div(S * mul2, 10**18)) + mul1 * N_COINS / K0 - unsafe_div(mul2 * D, 10**18)
# D -= f / fprime; neg_fprime safediv being validated
D_plus: uint256 = D * (neg_fprime + S) / neg_fprime
D_minus: uint256 = unsafe_div(D * D, neg_fprime)
if 10**18 > K0:
D_minus += unsafe_div(unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18) * unsafe_sub(10**18, K0), K0)
else:
D_minus -= unsafe_div(unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18) * unsafe_sub(K0, 10**18), K0)
if D_plus > D_minus:
D = unsafe_sub(D_plus, D_minus)
else:
D = unsafe_div(unsafe_sub(D_minus, D_plus), 2)
if D > D_prev:
diff = unsafe_sub(D, D_prev)
else:
diff = unsafe_sub(D_prev, D)
if diff * 10**14 < max(10**16, D): # Could reduce precision for gas efficiency here
for _x in x:
frac: uint256 = _x * 10**18 / D
assert (frac >= 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe values x[i]
return D
raise "Did not converge"
@external
@pure
def get_y(
_ANN: uint256,
_gamma: uint256,
_x: uint256[N_COINS],
_D: uint256,
i: uint256
) -> uint256[2]:
# Safety checks
assert _ANN > MIN_A - 1 and _ANN < MAX_A + 1 # dev: unsafe values A
assert _gamma > MIN_GAMMA - 1 and _gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
assert _D > 10**17 - 1 and _D < 10**15 * 10**18 + 1 # dev: unsafe values D
ANN: int256 = convert(_ANN, int256)
gamma: int256 = convert(_gamma, int256)
D: int256 = convert(_D, int256)
x_j: int256 = convert(_x[1 - i], int256)
gamma2: int256 = unsafe_mul(gamma, gamma)
# savediv by x_j done here:
y: int256 = D**2 / (x_j * N_COINS**2)
# K0_i: int256 = (10**18 * N_COINS) * x_j / D
K0_i: int256 = unsafe_div(10**18 * N_COINS * x_j, D)
assert (K0_i > 10**16 * N_COINS - 1) and (K0_i < 10**20 * N_COINS + 1) # dev: unsafe values x[i]
ann_gamma2: int256 = ANN * gamma2
# a = 10**36 / N_COINS**2
a: int256 = 10**32
# b = ANN*D*gamma2/4/10000/x_j/10**4 - 10**32*3 - 2*gamma*10**14
b: int256 = (
D*ann_gamma2/400000000/x_j
- convert(unsafe_mul(10**32, 3), int256)
- unsafe_mul(unsafe_mul(2, gamma), 10**14)
)
# c = 10**32*3 + 4*gamma*10**14 + gamma2/10**4 + 4*ANN*gamma2*x_j/D/10000/4/10**4 - 4*ANN*gamma2/10000/4/10**4
c: int256 = (
unsafe_mul(10**32, convert(3, int256))
+ unsafe_mul(unsafe_mul(4, gamma), 10**14)
+ unsafe_div(gamma2, 10**4)
+ unsafe_div(unsafe_div(unsafe_mul(4, ann_gamma2), 400000000) * x_j, D)
- unsafe_div(unsafe_mul(4, ann_gamma2), 400000000)
)
# d = -(10**18+gamma)**2 / 10**4
d: int256 = -unsafe_div(unsafe_add(10**18, gamma) ** 2, 10**4)
# delta0: int256 = 3*a*c/b - b
delta0: int256 = 3 * a * c / b - b # safediv by b
# delta1: int256 = 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1: int256 = 3 * delta0 + b - 27*a**2/b*d/b
divider: int256 = 1
threshold: int256 = min(min(abs(delta0), abs(delta1)), a)
if threshold > 10**48:
divider = 10**30
elif threshold > 10**46:
divider = 10**28
elif threshold > 10**44:
divider = 10**26
elif threshold > 10**42:
divider = 10**24
elif threshold > 10**40:
divider = 10**22
elif threshold > 10**38:
divider = 10**20
elif threshold > 10**36:
divider = 10**18
elif threshold > 10**34:
divider = 10**16
elif threshold > 10**32:
divider = 10**14
elif threshold > 10**30:
divider = 10**12
elif threshold > 10**28:
divider = 10**10
elif threshold > 10**26:
divider = 10**8
elif threshold > 10**24:
divider = 10**6
elif threshold > 10**20:
divider = 10**2
a = unsafe_div(a, divider)
b = unsafe_div(b, divider)
c = unsafe_div(c, divider)
d = unsafe_div(d, divider)
# delta0 = 3*a*c/b - b: here we can do more unsafe ops now:
delta0 = unsafe_div(unsafe_mul(unsafe_mul(3, a), c), b) - b
# delta1 = 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1 = 3 * delta0 + b - unsafe_div(unsafe_mul(unsafe_div(unsafe_mul(27, a**2), b), d), b)
# sqrt_arg: int256 = delta1**2 + 4*delta0**2/b*delta0
sqrt_arg: int256 = delta1**2 + unsafe_mul(unsafe_div(4*delta0**2, b), delta0)
sqrt_val: int256 = 0
if sqrt_arg > 0:
sqrt_val = convert(isqrt(convert(sqrt_arg, uint256)), int256)
else:
return [
self._newton_y(_ANN, _gamma, _x, _D, i),
0
]
b_cbrt: int256 = 0
if b > 0:
b_cbrt = convert(self._cbrt(convert(b, uint256)), int256)
else:
b_cbrt = -convert(self._cbrt(convert(-b, uint256)), int256)
second_cbrt: int256 = 0
if delta1 > 0:
# second_cbrt = convert(self._cbrt(convert((delta1 + sqrt_val), uint256) / 2), int256)
second_cbrt = convert(self._cbrt(convert(unsafe_add(delta1, sqrt_val), uint256) / 2), int256)
else:
# second_cbrt = -convert(self._cbrt(convert(unsafe_sub(sqrt_val, delta1), uint256) / 2), int256)
second_cbrt = -convert(self._cbrt(unsafe_div(convert(unsafe_sub(sqrt_val, delta1), uint256), 2)), int256)
# C1: int256 = b_cbrt**2/10**18*second_cbrt/10**18
C1: int256 = unsafe_div(unsafe_mul(unsafe_div(b_cbrt**2, 10**18), second_cbrt), 10**18)
# root: int256 = (10**18*C1 - 10**18*b - 10**18*b*delta0/C1)/(3*a), keep 2 safe ops here.
root: int256 = (unsafe_mul(10**18, C1) - unsafe_mul(10**18, b) - unsafe_mul(10**18, b)/C1*delta0)/unsafe_mul(3, a)
# y_out: uint256[2] = [
# convert(D**2/x_j*root/4/10**18, uint256), # <--- y
# convert(root, uint256) # <----------------------- K0Prev
# ]
y_out: uint256[2] = [convert(unsafe_div(unsafe_div(unsafe_mul(unsafe_div(D**2, x_j), root), 4), 10**18), uint256), convert(root, uint256)]
frac: uint256 = unsafe_div(y_out[0] * 10**18, _D)
assert (frac >= 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe value for y
return y_out
exchange_received
¶
TwoCrypto.exchange_received(i: uint256, j: uint256, dx: uint256, min_dy: uint256, receiver: address = msg.sender) -> uint256:
Warning
The transfer of coins into the pool and then calling exchange_received
is highly advised to be done in the same transaction. If not, other users or MEV bots may frontrun exchange_received
, potentially stealing the coins.
Function to exchange dx
amount of coin i
for coin j
and receive a minimum amount of min_dy
. This function requires a transfer of dx
amount of coin i
to the pool prior to calling this function, as this exchange is based on the change of token balances in the pool. The pool will not call transferFrom
and will only check if a surplus of coins[i]
is greater than or equal to dx
. Charged fee at current states is Pool.fee()
.
Returns: amount of output coin j
received (uint256
).
Emits: TokenExchange
Input | Type | Description |
---|---|---|
i | uint256 | Index value for the input coin. |
j | uint256 | Index value for the output coin. |
dx | uint256 | Amount of input coin being swapped in. |
min_dy | uint256 | Minimum amount of output coin to receive. |
receiver | address | Address to send output coin to. Defaults to msg.sender . |
Source code
event TokenExchange:
buyer: indexed(address)
sold_id: uint256
tokens_sold: uint256
bought_id: uint256
tokens_bought: uint256
fee: uint256
packed_price_scale: uint256
@external
@nonreentrant('lock')
def exchange_received(
i: uint256,
j: uint256,
dx: uint256,
min_dy: uint256,
receiver: address = msg.sender,
) -> uint256:
"""
@notice Exchange: but user must transfer dx amount of coin[i] tokens to pool first.
Pool will not call transferFrom and will only check if a surplus of
coins[i] is greater than or equal to `dx`.
@dev Use-case is to reduce the number of redundant ERC20 token
transfers in zaps. Primarily for dex-aggregators/arbitrageurs/searchers.
Note for users: please transfer + exchange_received in 1 tx.
@param i Index value for the input coin
@param j Index value for the output coin
@param dx Amount of input coin being swapped in
@param min_dy Minimum amount of output coin to receive
@param receiver Address to send the output coin to
@return uint256 Amount of tokens at index j received by the `receiver`
"""
# _transfer_in updates self.balances here:
dx_received: uint256 = self._transfer_in(
i,
dx,
msg.sender,
True # <---- expect_optimistic_transfer is set to True here.
)
# No ERC20 token transfers occur here:
out: uint256[3] = self._exchange(
i,
j,
dx_received,
min_dy,
)
# _transfer_out updates self.balances here. Update to state occurs before
# external calls:
self._transfer_out(j, out[0], receiver)
# log:
log TokenExchange(msg.sender, i, dx_received, j, out[0], out[1], out[2])
return out[0]
@internal
def _exchange(
i: uint256,
j: uint256,
dx_received: uint256,
min_dy: uint256,
) -> uint256[3]:
assert i != j # dev: coin index out of range
assert dx_received > 0 # dev: do not exchange 0 coins
A_gamma: uint256[2] = self._A_gamma()
xp: uint256[N_COINS] = self.balances
dy: uint256 = 0
y: uint256 = xp[j]
x0: uint256 = xp[i] - dx_received # old xp[i]
price_scale: uint256 = self.cached_price_scale
xp = [
xp[0] * PRECISIONS[0],
unsafe_div(xp[1] * price_scale * PRECISIONS[1], PRECISION)
]
# ----------- Update invariant if A, gamma are undergoing ramps ---------
t: uint256 = self.future_A_gamma_time
if t > block.timestamp:
x0 *= PRECISIONS[i]
if i > 0:
x0 = unsafe_div(x0 * price_scale, PRECISION)
x1: uint256 = xp[i] # <------------------ Back up old value in xp ...
xp[i] = x0 # |
self.D = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0) # |
xp[i] = x1 # <-------------------------------------- ... and restore.
# ----------------------- Calculate dy and fees --------------------------
D: uint256 = self.D
y_out: uint256[2] = MATH.get_y(A_gamma[0], A_gamma[1], xp, D, j)
dy = xp[j] - y_out[0]
xp[j] -= dy
dy -= 1
if j > 0:
dy = dy * PRECISION / price_scale
dy /= PRECISIONS[j]
fee: uint256 = unsafe_div(self._fee(xp) * dy, 10**10)
dy -= fee # <--------------------- Subtract fee from the outgoing amount.
assert dy >= min_dy, "Slippage"
y -= dy
y *= PRECISIONS[j]
if j > 0:
y = unsafe_div(y * price_scale, PRECISION)
xp[j] = y # <------------------------------------------------- Update xp.
# ------ Tweak price_scale with good initial guess for newton_D ----------
price_scale = self.tweak_price(A_gamma, xp, 0, y_out[1])
return [dy, fee, price_scale]
@external
@view
def newton_D(ANN: uint256, gamma: uint256, x_unsorted: uint256[N_COINS], K0_prev: uint256 = 0) -> uint256:
"""
Finding the invariant using Newton method.
ANN is higher by the factor A_MULTIPLIER
ANN is already A * N**N
"""
# Safety checks
assert ANN > MIN_A - 1 and ANN < MAX_A + 1 # dev: unsafe values A
assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
# Initial value of invariant D is that for constant-product invariant
x: uint256[N_COINS] = x_unsorted
if x[0] < x[1]:
x = [x_unsorted[1], x_unsorted[0]]
assert x[0] > 10**9 - 1 and x[0] < 10**15 * 10**18 + 1 # dev: unsafe values x[0]
assert unsafe_div(x[1] * 10**18, x[0]) > 10**14 - 1 # dev: unsafe values x[i] (input)
S: uint256 = unsafe_add(x[0], x[1]) # can unsafe add here because we checked x[0] bounds
D: uint256 = 0
if K0_prev == 0:
D = N_COINS * isqrt(unsafe_mul(x[0], x[1]))
else:
# D = isqrt(x[0] * x[1] * 4 / K0_prev * 10**18)
D = isqrt(unsafe_mul(unsafe_div(unsafe_mul(unsafe_mul(4, x[0]), x[1]), K0_prev), 10**18))
if S < D:
D = S
__g1k0: uint256 = gamma + 10**18
diff: uint256 = 0
for i in range(255):
D_prev: uint256 = D
assert D > 0
# Unsafe division by D and D_prev is now safe
# K0: uint256 = 10**18
# for _x in x:
# K0 = K0 * _x * N_COINS / D
# collapsed for 2 coins
K0: uint256 = unsafe_div(unsafe_div((10**18 * N_COINS**2) * x[0], D) * x[1], D)
_g1k0: uint256 = __g1k0
if _g1k0 > K0:
_g1k0 = unsafe_add(unsafe_sub(_g1k0, K0), 1) # > 0
else:
_g1k0 = unsafe_add(unsafe_sub(K0, _g1k0), 1) # > 0
# D / (A * N**N) * _g1k0**2 / gamma**2
mul1: uint256 = unsafe_div(unsafe_div(unsafe_div(10**18 * D, gamma) * _g1k0, gamma) * _g1k0 * A_MULTIPLIER, ANN)
# 2*N*K0 / _g1k0
mul2: uint256 = unsafe_div(((2 * 10**18) * N_COINS) * K0, _g1k0)
# calculate neg_fprime. here K0 > 0 is being validated (safediv).
neg_fprime: uint256 = (S + unsafe_div(S * mul2, 10**18)) + mul1 * N_COINS / K0 - unsafe_div(mul2 * D, 10**18)
# D -= f / fprime; neg_fprime safediv being validated
D_plus: uint256 = D * (neg_fprime + S) / neg_fprime
D_minus: uint256 = unsafe_div(D * D, neg_fprime)
if 10**18 > K0:
D_minus += unsafe_div(unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18) * unsafe_sub(10**18, K0), K0)
else:
D_minus -= unsafe_div(unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18) * unsafe_sub(K0, 10**18), K0)
if D_plus > D_minus:
D = unsafe_sub(D_plus, D_minus)
else:
D = unsafe_div(unsafe_sub(D_minus, D_plus), 2)
if D > D_prev:
diff = unsafe_sub(D, D_prev)
else:
diff = unsafe_sub(D_prev, D)
if diff * 10**14 < max(10**16, D): # Could reduce precision for gas efficiency here
for _x in x:
frac: uint256 = _x * 10**18 / D
assert (frac >= 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe values x[i]
return D
raise "Did not converge"
@external
@pure
def get_y(
_ANN: uint256,
_gamma: uint256,
_x: uint256[N_COINS],
_D: uint256,
i: uint256
) -> uint256[2]:
# Safety checks
assert _ANN > MIN_A - 1 and _ANN < MAX_A + 1 # dev: unsafe values A
assert _gamma > MIN_GAMMA - 1 and _gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
assert _D > 10**17 - 1 and _D < 10**15 * 10**18 + 1 # dev: unsafe values D
ANN: int256 = convert(_ANN, int256)
gamma: int256 = convert(_gamma, int256)
D: int256 = convert(_D, int256)
x_j: int256 = convert(_x[1 - i], int256)
gamma2: int256 = unsafe_mul(gamma, gamma)
# savediv by x_j done here:
y: int256 = D**2 / (x_j * N_COINS**2)
# K0_i: int256 = (10**18 * N_COINS) * x_j / D
K0_i: int256 = unsafe_div(10**18 * N_COINS * x_j, D)
assert (K0_i > 10**16 * N_COINS - 1) and (K0_i < 10**20 * N_COINS + 1) # dev: unsafe values x[i]
ann_gamma2: int256 = ANN * gamma2
# a = 10**36 / N_COINS**2
a: int256 = 10**32
# b = ANN*D*gamma2/4/10000/x_j/10**4 - 10**32*3 - 2*gamma*10**14
b: int256 = (
D*ann_gamma2/400000000/x_j
- convert(unsafe_mul(10**32, 3), int256)
- unsafe_mul(unsafe_mul(2, gamma), 10**14)
)
# c = 10**32*3 + 4*gamma*10**14 + gamma2/10**4 + 4*ANN*gamma2*x_j/D/10000/4/10**4 - 4*ANN*gamma2/10000/4/10**4
c: int256 = (
unsafe_mul(10**32, convert(3, int256))
+ unsafe_mul(unsafe_mul(4, gamma), 10**14)
+ unsafe_div(gamma2, 10**4)
+ unsafe_div(unsafe_div(unsafe_mul(4, ann_gamma2), 400000000) * x_j, D)
- unsafe_div(unsafe_mul(4, ann_gamma2), 400000000)
)
# d = -(10**18+gamma)**2 / 10**4
d: int256 = -unsafe_div(unsafe_add(10**18, gamma) ** 2, 10**4)
# delta0: int256 = 3*a*c/b - b
delta0: int256 = 3 * a * c / b - b # safediv by b
# delta1: int256 = 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1: int256 = 3 * delta0 + b - 27*a**2/b*d/b
divider: int256 = 1
threshold: int256 = min(min(abs(delta0), abs(delta1)), a)
if threshold > 10**48:
divider = 10**30
elif threshold > 10**46:
divider = 10**28
elif threshold > 10**44:
divider = 10**26
elif threshold > 10**42:
divider = 10**24
elif threshold > 10**40:
divider = 10**22
elif threshold > 10**38:
divider = 10**20
elif threshold > 10**36:
divider = 10**18
elif threshold > 10**34:
divider = 10**16
elif threshold > 10**32:
divider = 10**14
elif threshold > 10**30:
divider = 10**12
elif threshold > 10**28:
divider = 10**10
elif threshold > 10**26:
divider = 10**8
elif threshold > 10**24:
divider = 10**6
elif threshold > 10**20:
divider = 10**2
a = unsafe_div(a, divider)
b = unsafe_div(b, divider)
c = unsafe_div(c, divider)
d = unsafe_div(d, divider)
# delta0 = 3*a*c/b - b: here we can do more unsafe ops now:
delta0 = unsafe_div(unsafe_mul(unsafe_mul(3, a), c), b) - b
# delta1 = 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1 = 3 * delta0 + b - unsafe_div(unsafe_mul(unsafe_div(unsafe_mul(27, a**2), b), d), b)
# sqrt_arg: int256 = delta1**2 + 4*delta0**2/b*delta0
sqrt_arg: int256 = delta1**2 + unsafe_mul(unsafe_div(4*delta0**2, b), delta0)
sqrt_val: int256 = 0
if sqrt_arg > 0:
sqrt_val = convert(isqrt(convert(sqrt_arg, uint256)), int256)
else:
return [
self._newton_y(_ANN, _gamma, _x, _D, i),
0
]
b_cbrt: int256 = 0
if b > 0:
b_cbrt = convert(self._cbrt(convert(b, uint256)), int256)
else:
b_cbrt = -convert(self._cbrt(convert(-b, uint256)), int256)
second_cbrt: int256 = 0
if delta1 > 0:
# second_cbrt = convert(self._cbrt(convert((delta1 + sqrt_val), uint256) / 2), int256)
second_cbrt = convert(self._cbrt(convert(unsafe_add(delta1, sqrt_val), uint256) / 2), int256)
else:
# second_cbrt = -convert(self._cbrt(convert(unsafe_sub(sqrt_val, delta1), uint256) / 2), int256)
second_cbrt = -convert(self._cbrt(unsafe_div(convert(unsafe_sub(sqrt_val, delta1), uint256), 2)), int256)
# C1: int256 = b_cbrt**2/10**18*second_cbrt/10**18
C1: int256 = unsafe_div(unsafe_mul(unsafe_div(b_cbrt**2, 10**18), second_cbrt), 10**18)
# root: int256 = (10**18*C1 - 10**18*b - 10**18*b*delta0/C1)/(3*a), keep 2 safe ops here.
root: int256 = (unsafe_mul(10**18, C1) - unsafe_mul(10**18, b) - unsafe_mul(10**18, b)/C1*delta0)/unsafe_mul(3, a)
# y_out: uint256[2] = [
# convert(D**2/x_j*root/4/10**18, uint256), # <--- y
# convert(root, uint256) # <----------------------- K0Prev
# ]
y_out: uint256[2] = [convert(unsafe_div(unsafe_div(unsafe_mul(unsafe_div(D**2, x_j), root), 4), 10**18), uint256), convert(root, uint256)]
frac: uint256 = unsafe_div(y_out[0] * 10**18, _D)
assert (frac >= 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe value for y
return y_out
get_dy
¶
TwoCrypto.get_dy(i: uint256, j: uint256, dx: uint256) -> uint256:
Getter for the received amount of coin j
for swapping in dx
amount of coin i
. This method includes fees.
Returns: exact amount of output coin j
(uint256
).
Input | Type | Description |
---|---|---|
i | uint256 | Index of input token. |
j | uint256 | Index of output token. |
dx | uint256 | Amount of input tokens. |
Source code
@external
@view
def get_dy(i: uint256, j: uint256, dx: uint256) -> uint256:
"""
@notice Get amount of coin[j] tokens received for swapping in dx amount of coin[i]
@dev Includes fee.
@param i index of input token. Check pool.coins(i) to get coin address at ith index
@param j index of output token
@param dx amount of input coin[i] tokens
@return uint256 Exact amount of output j tokens for dx amount of i input tokens.
"""
view_contract: address = factory.views_implementation()
return Views(view_contract).get_dy(i, j, dx, self)
@external
@view
def get_dy(
i: uint256, j: uint256, dx: uint256, swap: address
) -> uint256:
dy: uint256 = 0
xp: uint256[N_COINS] = empty(uint256[N_COINS])
# dy = (get_y(x + dx) - y) * (1 - fee)
dy, xp = self._get_dy_nofee(i, j, dx, swap)
dy -= Curve(swap).fee_calc(xp) * dy / 10**10
return dy
@internal
@view
def _get_dy_nofee(
i: uint256, j: uint256, dx: uint256, swap: address
) -> (uint256, uint256[N_COINS]):
assert i != j and i < N_COINS and j < N_COINS, "coin index out of range"
assert dx > 0, "do not exchange 0 coins"
math: Math = Curve(swap).MATH()
xp: uint256[N_COINS] = empty(uint256[N_COINS])
precisions: uint256[N_COINS] = empty(uint256[N_COINS])
price_scale: uint256 = 0
D: uint256 = 0
token_supply: uint256 = 0
A: uint256 = 0
gamma: uint256 = 0
xp, D, token_supply, price_scale, A, gamma, precisions = self._prep_calc(swap)
# adjust xp with input dx
xp[i] += dx
xp = [
xp[0] * precisions[0],
xp[1] * price_scale * precisions[1] / PRECISION
]
y_out: uint256[2] = math.get_y(A, gamma, xp, D, j)
dy: uint256 = xp[j] - y_out[0] - 1
xp[j] = y_out[0]
if j > 0:
dy = dy * PRECISION / price_scale
dy /= precisions[j]
return dy, xp
@external
@pure
def get_y(
_ANN: uint256,
_gamma: uint256,
_x: uint256[N_COINS],
_D: uint256,
i: uint256
) -> uint256[2]:
# Safety checks
assert _ANN > MIN_A - 1 and _ANN < MAX_A + 1 # dev: unsafe values A
assert _gamma > MIN_GAMMA - 1 and _gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
assert _D > 10**17 - 1 and _D < 10**15 * 10**18 + 1 # dev: unsafe values D
ANN: int256 = convert(_ANN, int256)
gamma: int256 = convert(_gamma, int256)
D: int256 = convert(_D, int256)
x_j: int256 = convert(_x[1 - i], int256)
gamma2: int256 = unsafe_mul(gamma, gamma)
# savediv by x_j done here:
y: int256 = D**2 / (x_j * N_COINS**2)
# K0_i: int256 = (10**18 * N_COINS) * x_j / D
K0_i: int256 = unsafe_div(10**18 * N_COINS * x_j, D)
assert (K0_i > 10**16 * N_COINS - 1) and (K0_i < 10**20 * N_COINS + 1) # dev: unsafe values x[i]
ann_gamma2: int256 = ANN * gamma2
# a = 10**36 / N_COINS**2
a: int256 = 10**32
# b = ANN*D*gamma2/4/10000/x_j/10**4 - 10**32*3 - 2*gamma*10**14
b: int256 = (
D*ann_gamma2/400000000/x_j
- convert(unsafe_mul(10**32, 3), int256)
- unsafe_mul(unsafe_mul(2, gamma), 10**14)
)
# c = 10**32*3 + 4*gamma*10**14 + gamma2/10**4 + 4*ANN*gamma2*x_j/D/10000/4/10**4 - 4*ANN*gamma2/10000/4/10**4
c: int256 = (
unsafe_mul(10**32, convert(3, int256))
+ unsafe_mul(unsafe_mul(4, gamma), 10**14)
+ unsafe_div(gamma2, 10**4)
+ unsafe_div(unsafe_div(unsafe_mul(4, ann_gamma2), 400000000) * x_j, D)
- unsafe_div(unsafe_mul(4, ann_gamma2), 400000000)
)
# d = -(10**18+gamma)**2 / 10**4
d: int256 = -unsafe_div(unsafe_add(10**18, gamma) ** 2, 10**4)
# delta0: int256 = 3*a*c/b - b
delta0: int256 = 3 * a * c / b - b # safediv by b
# delta1: int256 = 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1: int256 = 3 * delta0 + b - 27*a**2/b*d/b
divider: int256 = 1
threshold: int256 = min(min(abs(delta0), abs(delta1)), a)
if threshold > 10**48:
divider = 10**30
elif threshold > 10**46:
divider = 10**28
elif threshold > 10**44:
divider = 10**26
elif threshold > 10**42:
divider = 10**24
elif threshold > 10**40:
divider = 10**22
elif threshold > 10**38:
divider = 10**20
elif threshold > 10**36:
divider = 10**18
elif threshold > 10**34:
divider = 10**16
elif threshold > 10**32:
divider = 10**14
elif threshold > 10**30:
divider = 10**12
elif threshold > 10**28:
divider = 10**10
elif threshold > 10**26:
divider = 10**8
elif threshold > 10**24:
divider = 10**6
elif threshold > 10**20:
divider = 10**2
a = unsafe_div(a, divider)
b = unsafe_div(b, divider)
c = unsafe_div(c, divider)
d = unsafe_div(d, divider)
# delta0 = 3*a*c/b - b: here we can do more unsafe ops now:
delta0 = unsafe_div(unsafe_mul(unsafe_mul(3, a), c), b) - b
# delta1 = 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1 = 3 * delta0 + b - unsafe_div(unsafe_mul(unsafe_div(unsafe_mul(27, a**2), b), d), b)
# sqrt_arg: int256 = delta1**2 + 4*delta0**2/b*delta0
sqrt_arg: int256 = delta1**2 + unsafe_mul(unsafe_div(4*delta0**2, b), delta0)
sqrt_val: int256 = 0
if sqrt_arg > 0:
sqrt_val = convert(isqrt(convert(sqrt_arg, uint256)), int256)
else:
return [
self._newton_y(_ANN, _gamma, _x, _D, i),
0
]
b_cbrt: int256 = 0
if b > 0:
b_cbrt = convert(self._cbrt(convert(b, uint256)), int256)
else:
b_cbrt = -convert(self._cbrt(convert(-b, uint256)), int256)
second_cbrt: int256 = 0
if delta1 > 0:
# second_cbrt = convert(self._cbrt(convert((delta1 + sqrt_val), uint256) / 2), int256)
second_cbrt = convert(self._cbrt(convert(unsafe_add(delta1, sqrt_val), uint256) / 2), int256)
else:
# second_cbrt = -convert(self._cbrt(convert(unsafe_sub(sqrt_val, delta1), uint256) / 2), int256)
second_cbrt = -convert(self._cbrt(unsafe_div(convert(unsafe_sub(sqrt_val, delta1), uint256), 2)), int256)
# C1: int256 = b_cbrt**2/10**18*second_cbrt/10**18
C1: int256 = unsafe_div(unsafe_mul(unsafe_div(b_cbrt**2, 10**18), second_cbrt), 10**18)
# root: int256 = (10**18*C1 - 10**18*b - 10**18*b*delta0/C1)/(3*a), keep 2 safe ops here.
root: int256 = (unsafe_mul(10**18, C1) - unsafe_mul(10**18, b) - unsafe_mul(10**18, b)/C1*delta0)/unsafe_mul(3, a)
# y_out: uint256[2] = [
# convert(D**2/x_j*root/4/10**18, uint256), # <--- y
# convert(root, uint256) # <----------------------- K0Prev
# ]
y_out: uint256[2] = [convert(unsafe_div(unsafe_div(unsafe_mul(unsafe_div(D**2, x_j), root), 4), 10**18), uint256), convert(root, uint256)]
frac: uint256 = unsafe_div(y_out[0] * 10**18, _D)
assert (frac >= 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe value for y
return y_out
get_dx
¶
TwoCrypto.get_dx(i: uint256, j: uint256, dy: uint256) -> uint256:
Getter for the required amount of coin i
to input for swapping out dy
amount of token j
.
Returns: amount of input coin i
needed (uint256
).
Input | Type | Description |
---|---|---|
i | uint256 | Index of input token. |
j | uint256 | Index of output token. |
dy | uint256 | Amount of output tokens. |
Source code
@external
@view
def get_dx(i: uint256, j: uint256, dy: uint256) -> uint256:
"""
@notice Get amount of coin[i] tokens to input for swapping out dy amount
of coin[j]
@dev This is an approximate method, and returns estimates close to the input
amount. Expensive to call on-chain.
@param i index of input token. Check pool.coins(i) to get coin address at
ith index
@param j index of output token
@param dy amount of input coin[j] tokens received
@return uint256 Approximate amount of input i tokens to get dy amount of j tokens.
"""
view_contract: address = factory.views_implementation()
return Views(view_contract).get_dx(i, j, dy, self)
@view
@external
def get_dx(
i: uint256, j: uint256, dy: uint256, swap: address
) -> uint256:
dx: uint256 = 0
xp: uint256[N_COINS] = empty(uint256[N_COINS])
fee_dy: uint256 = 0
_dy: uint256 = dy
# for more precise dx (but never exact), increase num loops
for k in range(5):
dx, xp = self._get_dx_fee(i, j, _dy, swap)
fee_dy = Curve(swap).fee_calc(xp) * _dy / 10**10
_dy = dy + fee_dy + 1
return dx
@internal
@view
def _get_dx_fee(
i: uint256, j: uint256, dy: uint256, swap: address
) -> (uint256, uint256[N_COINS]):
# here, dy must include fees (and 1 wei offset)
assert i != j and i < N_COINS and j < N_COINS, "coin index out of range"
assert dy > 0, "do not exchange out 0 coins"
math: Math = Curve(swap).MATH()
xp: uint256[N_COINS] = empty(uint256[N_COINS])
precisions: uint256[N_COINS] = empty(uint256[N_COINS])
price_scale: uint256 = 0
D: uint256 = 0
token_supply: uint256 = 0
A: uint256 = 0
gamma: uint256 = 0
xp, D, token_supply, price_scale, A, gamma, precisions = self._prep_calc(swap)
# adjust xp with output dy. dy contains fee element, which we handle later
# (hence this internal method is called _get_dx_fee)
xp[j] -= dy
xp = [xp[0] * precisions[0], xp[1] * price_scale * precisions[1] / PRECISION]
x_out: uint256[2] = math.get_y(A, gamma, xp, D, i)
dx: uint256 = x_out[0] - xp[i]
xp[i] = x_out[0]
if i > 0:
dx = dx * PRECISION / price_scale
dx /= precisions[i]
return dx, xp
@external
@pure
def get_y(
_ANN: uint256,
_gamma: uint256,
_x: uint256[N_COINS],
_D: uint256,
i: uint256
) -> uint256[2]:
# Safety checks
assert _ANN > MIN_A - 1 and _ANN < MAX_A + 1 # dev: unsafe values A
assert _gamma > MIN_GAMMA - 1 and _gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
assert _D > 10**17 - 1 and _D < 10**15 * 10**18 + 1 # dev: unsafe values D
ANN: int256 = convert(_ANN, int256)
gamma: int256 = convert(_gamma, int256)
D: int256 = convert(_D, int256)
x_j: int256 = convert(_x[1 - i], int256)
gamma2: int256 = unsafe_mul(gamma, gamma)
# savediv by x_j done here:
y: int256 = D**2 / (x_j * N_COINS**2)
# K0_i: int256 = (10**18 * N_COINS) * x_j / D
K0_i: int256 = unsafe_div(10**18 * N_COINS * x_j, D)
assert (K0_i > 10**16 * N_COINS - 1) and (K0_i < 10**20 * N_COINS + 1) # dev: unsafe values x[i]
ann_gamma2: int256 = ANN * gamma2
# a = 10**36 / N_COINS**2
a: int256 = 10**32
# b = ANN*D*gamma2/4/10000/x_j/10**4 - 10**32*3 - 2*gamma*10**14
b: int256 = (
D*ann_gamma2/400000000/x_j
- convert(unsafe_mul(10**32, 3), int256)
- unsafe_mul(unsafe_mul(2, gamma), 10**14)
)
# c = 10**32*3 + 4*gamma*10**14 + gamma2/10**4 + 4*ANN*gamma2*x_j/D/10000/4/10**4 - 4*ANN*gamma2/10000/4/10**4
c: int256 = (
unsafe_mul(10**32, convert(3, int256))
+ unsafe_mul(unsafe_mul(4, gamma), 10**14)
+ unsafe_div(gamma2, 10**4)
+ unsafe_div(unsafe_div(unsafe_mul(4, ann_gamma2), 400000000) * x_j, D)
- unsafe_div(unsafe_mul(4, ann_gamma2), 400000000)
)
# d = -(10**18+gamma)**2 / 10**4
d: int256 = -unsafe_div(unsafe_add(10**18, gamma) ** 2, 10**4)
# delta0: int256 = 3*a*c/b - b
delta0: int256 = 3 * a * c / b - b # safediv by b
# delta1: int256 = 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1: int256 = 3 * delta0 + b - 27*a**2/b*d/b
divider: int256 = 1
threshold: int256 = min(min(abs(delta0), abs(delta1)), a)
if threshold > 10**48:
divider = 10**30
elif threshold > 10**46:
divider = 10**28
elif threshold > 10**44:
divider = 10**26
elif threshold > 10**42:
divider = 10**24
elif threshold > 10**40:
divider = 10**22
elif threshold > 10**38:
divider = 10**20
elif threshold > 10**36:
divider = 10**18
elif threshold > 10**34:
divider = 10**16
elif threshold > 10**32:
divider = 10**14
elif threshold > 10**30:
divider = 10**12
elif threshold > 10**28:
divider = 10**10
elif threshold > 10**26:
divider = 10**8
elif threshold > 10**24:
divider = 10**6
elif threshold > 10**20:
divider = 10**2
a = unsafe_div(a, divider)
b = unsafe_div(b, divider)
c = unsafe_div(c, divider)
d = unsafe_div(d, divider)
# delta0 = 3*a*c/b - b: here we can do more unsafe ops now:
delta0 = unsafe_div(unsafe_mul(unsafe_mul(3, a), c), b) - b
# delta1 = 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1 = 3 * delta0 + b - unsafe_div(unsafe_mul(unsafe_div(unsafe_mul(27, a**2), b), d), b)
# sqrt_arg: int256 = delta1**2 + 4*delta0**2/b*delta0
sqrt_arg: int256 = delta1**2 + unsafe_mul(unsafe_div(4*delta0**2, b), delta0)
sqrt_val: int256 = 0
if sqrt_arg > 0:
sqrt_val = convert(isqrt(convert(sqrt_arg, uint256)), int256)
else:
return [
self._newton_y(_ANN, _gamma, _x, _D, i),
0
]
b_cbrt: int256 = 0
if b > 0:
b_cbrt = convert(self._cbrt(convert(b, uint256)), int256)
else:
b_cbrt = -convert(self._cbrt(convert(-b, uint256)), int256)
second_cbrt: int256 = 0
if delta1 > 0:
# second_cbrt = convert(self._cbrt(convert((delta1 + sqrt_val), uint256) / 2), int256)
second_cbrt = convert(self._cbrt(convert(unsafe_add(delta1, sqrt_val), uint256) / 2), int256)
else:
# second_cbrt = -convert(self._cbrt(convert(unsafe_sub(sqrt_val, delta1), uint256) / 2), int256)
second_cbrt = -convert(self._cbrt(unsafe_div(convert(unsafe_sub(sqrt_val, delta1), uint256), 2)), int256)
# C1: int256 = b_cbrt**2/10**18*second_cbrt/10**18
C1: int256 = unsafe_div(unsafe_mul(unsafe_div(b_cbrt**2, 10**18), second_cbrt), 10**18)
# root: int256 = (10**18*C1 - 10**18*b - 10**18*b*delta0/C1)/(3*a), keep 2 safe ops here.
root: int256 = (unsafe_mul(10**18, C1) - unsafe_mul(10**18, b) - unsafe_mul(10**18, b)/C1*delta0)/unsafe_mul(3, a)
# y_out: uint256[2] = [
# convert(D**2/x_j*root/4/10**18, uint256), # <--- y
# convert(root, uint256) # <----------------------- K0Prev
# ]
y_out: uint256[2] = [convert(unsafe_div(unsafe_div(unsafe_mul(unsafe_div(D**2, x_j), root), 4), 10**18), uint256), convert(root, uint256)]
frac: uint256 = unsafe_div(y_out[0] * 10**18, _D)
assert (frac >= 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe value for y
return y_out
fee_calc
¶
TwoCrypto.fee_calc(xp: uint256[N_COINS]) -> uint256:
Getter for the charged exchange fee by the pool at the current state.
Returns: fee (uint256
).
Input | Type | Description |
---|---|---|
xp | uint256[N_COINS] | Pool balances multiplied by the coin precisions. |
Source code
@external
@view
def fee_calc(xp: uint256[N_COINS]) -> uint256: # <----- For by view contract.
"""
@notice Returns the fee charged by the pool at current state.
@param xp The current balances of the pool multiplied by coin precisions.
@return uint256 Fee value.
"""
return self._fee(xp)
@internal
@view
def _fee(xp: uint256[N_COINS]) -> uint256:
fee_params: uint256[3] = self._unpack_3(self.packed_fee_params)
f: uint256 = xp[0] + xp[1]
f = fee_params[2] * 10**18 / (
fee_params[2] + 10**18 -
(10**18 * N_COINS**N_COINS) * xp[0] / f * xp[1] / f
)
return unsafe_div(
fee_params[0] * f + fee_params[1] * (10**18 - f),
10**18
)
Adding and Removing Liquidity¶
The twocrypto-ng implementation utilizes the usual methods to add and remove liquidity.
Adding liquidity can be done via the add_liquidity
method. The code uses a list of unsigned integers uint256[N_COINS]
as input for the pools underlying tokens to add. Any proportion is possible. For example, adding fully single-sided can be done using [0, 1e18]
or [1e18, 0]
, but again, any variation is possible, e.g., [1e18, 1e19]
.
Removing liquidity can be done in two different ways. Either withdraw the underlying assets in a balanced proportion using the remove_liquidity
method or fully single-sided in a single underlying token using remove_liquidity_one_coin
.
add_liquidity
¶
TwoCrypto.add_liquidity(amounts: uint256[N_COINS], min_mint_amount: uint256, receiver: address = msg.sender) -> uint256:
Function to add liquidity to the pool and mint the corresponding LP tokens.
Returns: amount of LP tokens received (uint256
).
Emits: AddLiquidity
Input | Type | Description |
---|---|---|
amounts | uint256[N_COINS] | Amount of each coin to add. |
min_mint_amount | uint256 | Minimum amount of LP tokens to mint. |
receiver | address | Receiver of the LP tokens; defaults to msg.sender . |
Source code
event AddLiquidity:
provider: indexed(address)
token_amounts: uint256[N_COINS]
fee: uint256
token_supply: uint256
packed_price_scale: uint256
@external
@nonreentrant("lock")
def add_liquidity(
amounts: uint256[N_COINS],
min_mint_amount: uint256,
receiver: address = msg.sender
) -> uint256:
"""
@notice Adds liquidity into the pool.
@param amounts Amounts of each coin to add.
@param min_mint_amount Minimum amount of LP to mint.
@param receiver Address to send the LP tokens to. Default is msg.sender
@return uint256 Amount of LP tokens received by the `receiver
"""
A_gamma: uint256[2] = self._A_gamma()
xp: uint256[N_COINS] = self.balances
amountsp: uint256[N_COINS] = empty(uint256[N_COINS])
d_token: uint256 = 0
d_token_fee: uint256 = 0
old_D: uint256 = 0
assert amounts[0] + amounts[1] > 0 # dev: no coins to add
# --------------------- Get prices, balances -----------------------------
price_scale: uint256 = self.cached_price_scale
# -------------------------------------- Update balances and calculate xp.
xp_old: uint256[N_COINS] = xp
amounts_received: uint256[N_COINS] = empty(uint256[N_COINS])
########################## TRANSFER IN <-------
for i in range(N_COINS):
if amounts[i] > 0:
# Updates self.balances here:
amounts_received[i] = self._transfer_in(
i,
amounts[i],
msg.sender,
False, # <--------------------- Disable optimistic transfers.
)
xp[i] = xp[i] + amounts_received[i]
xp = [
xp[0] * PRECISIONS[0],
unsafe_div(xp[1] * price_scale * PRECISIONS[1], PRECISION)
]
xp_old = [
xp_old[0] * PRECISIONS[0],
unsafe_div(xp_old[1] * price_scale * PRECISIONS[1], PRECISION)
]
for i in range(N_COINS):
if amounts_received[i] > 0:
amountsp[i] = xp[i] - xp_old[i]
# -------------------- Calculate LP tokens to mint -----------------------
if self.future_A_gamma_time > block.timestamp: # <--- A_gamma is ramping.
# ----- Recalculate the invariant if A or gamma are undergoing a ramp.
old_D = MATH.newton_D(A_gamma[0], A_gamma[1], xp_old, 0)
else:
old_D = self.D
D: uint256 = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0)
token_supply: uint256 = self.totalSupply
if old_D > 0:
d_token = token_supply * D / old_D - token_supply
else:
d_token = self.get_xcp(D, price_scale) # <----- Making initial virtual price equal to 1.
assert d_token > 0 # dev: nothing minted
if old_D > 0:
d_token_fee = (
self._calc_token_fee(amountsp, xp) * d_token / 10**10 + 1
)
d_token -= d_token_fee
token_supply += d_token
self.mint(receiver, d_token)
self.admin_lp_virtual_balance += unsafe_div(ADMIN_FEE * d_token_fee, 10**10)
price_scale = self.tweak_price(A_gamma, xp, D, 0)
else:
# (re)instatiating an empty pool:
self.D = D
self.virtual_price = 10**18
self.xcp_profit = 10**18
self.xcp_profit_a = 10**18
# Initialise xcp oracle here:
self.cached_xcp_oracle = d_token # <--- virtual_price * totalSupply / 10**18
self.mint(receiver, d_token)
assert d_token >= min_mint_amount, "Slippage"
# ---------------------------------------------- Log and claim admin fees.
log AddLiquidity(
receiver,
amounts_received,
d_token_fee,
token_supply,
price_scale
)
return d_token
@external
@view
def newton_D(ANN: uint256, gamma: uint256, x_unsorted: uint256[N_COINS], K0_prev: uint256 = 0) -> uint256:
"""
Finding the invariant using Newton method.
ANN is higher by the factor A_MULTIPLIER
ANN is already A * N**N
"""
# Safety checks
assert ANN > MIN_A - 1 and ANN < MAX_A + 1 # dev: unsafe values A
assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
# Initial value of invariant D is that for constant-product invariant
x: uint256[N_COINS] = x_unsorted
if x[0] < x[1]:
x = [x_unsorted[1], x_unsorted[0]]
assert x[0] > 10**9 - 1 and x[0] < 10**15 * 10**18 + 1 # dev: unsafe values x[0]
assert unsafe_div(x[1] * 10**18, x[0]) > 10**14 - 1 # dev: unsafe values x[i] (input)
S: uint256 = unsafe_add(x[0], x[1]) # can unsafe add here because we checked x[0] bounds
D: uint256 = 0
if K0_prev == 0:
D = N_COINS * isqrt(unsafe_mul(x[0], x[1]))
else:
# D = isqrt(x[0] * x[1] * 4 / K0_prev * 10**18)
D = isqrt(unsafe_mul(unsafe_div(unsafe_mul(unsafe_mul(4, x[0]), x[1]), K0_prev), 10**18))
if S < D:
D = S
__g1k0: uint256 = gamma + 10**18
diff: uint256 = 0
for i in range(255):
D_prev: uint256 = D
assert D > 0
# Unsafe division by D and D_prev is now safe
# K0: uint256 = 10**18
# for _x in x:
# K0 = K0 * _x * N_COINS / D
# collapsed for 2 coins
K0: uint256 = unsafe_div(unsafe_div((10**18 * N_COINS**2) * x[0], D) * x[1], D)
_g1k0: uint256 = __g1k0
if _g1k0 > K0:
_g1k0 = unsafe_add(unsafe_sub(_g1k0, K0), 1) # > 0
else:
_g1k0 = unsafe_add(unsafe_sub(K0, _g1k0), 1) # > 0
# D / (A * N**N) * _g1k0**2 / gamma**2
mul1: uint256 = unsafe_div(unsafe_div(unsafe_div(10**18 * D, gamma) * _g1k0, gamma) * _g1k0 * A_MULTIPLIER, ANN)
# 2*N*K0 / _g1k0
mul2: uint256 = unsafe_div(((2 * 10**18) * N_COINS) * K0, _g1k0)
# calculate neg_fprime. here K0 > 0 is being validated (safediv).
neg_fprime: uint256 = (S + unsafe_div(S * mul2, 10**18)) + mul1 * N_COINS / K0 - unsafe_div(mul2 * D, 10**18)
# D -= f / fprime; neg_fprime safediv being validated
D_plus: uint256 = D * (neg_fprime + S) / neg_fprime
D_minus: uint256 = unsafe_div(D * D, neg_fprime)
if 10**18 > K0:
D_minus += unsafe_div(unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18) * unsafe_sub(10**18, K0), K0)
else:
D_minus -= unsafe_div(unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18) * unsafe_sub(K0, 10**18), K0)
if D_plus > D_minus:
D = unsafe_sub(D_plus, D_minus)
else:
D = unsafe_div(unsafe_sub(D_minus, D_plus), 2)
if D > D_prev:
diff = unsafe_sub(D, D_prev)
else:
diff = unsafe_sub(D_prev, D)
if diff * 10**14 < max(10**16, D): # Could reduce precision for gas efficiency here
for _x in x:
frac: uint256 = _x * 10**18 / D
assert (frac >= 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe values x[i]
return D
raise "Did not converge"
calc_token_fee
¶
TwoCrypto.calc_token_fee(amounts: uint256[N_COINS], xp: uint256[N_COINS]) -> uint256:
Function to calculate the charged fee on amounts
when adding liquidity.
Returns: fee (uint256
).
Input | Type | Description |
---|---|---|
amounts | uint256[N_COINS] | Amount of coins added to the pool. |
xp | uint256[N_COINS] | Pool balances multiplied by the coin precisions. |
Source code
@external
@view
def calc_token_fee(
amounts: uint256[N_COINS], xp: uint256[N_COINS]
) -> uint256:
"""
@notice Returns the fee charged on the given amounts for add_liquidity.
@param amounts The amounts of coins being added to the pool.
@param xp The current balances of the pool multiplied by coin precisions.
@return uint256 Fee charged.
"""
return self._calc_token_fee(amounts, xp)
@view
@internal
def _calc_token_fee(amounts: uint256[N_COINS], xp: uint256[N_COINS]) -> uint256:
# fee = sum(amounts_i - avg(amounts)) * fee' / sum(amounts)
fee: uint256 = unsafe_div(
unsafe_mul(self._fee(xp), N_COINS),
unsafe_mul(4, unsafe_sub(N_COINS, 1))
)
S: uint256 = 0
for _x in amounts:
S += _x
avg: uint256 = unsafe_div(S, N_COINS)
Sdiff: uint256 = 0
for _x in amounts:
if _x > avg:
Sdiff += unsafe_sub(_x, avg)
else:
Sdiff += unsafe_sub(avg, _x)
return fee * Sdiff / S + NOISE_FEE
remove_liquidity
¶
TwoCrypto.remove_liquidity(_amount: uint256, min_amounts: uint256[N_COINS], receiver: address = msg.sender) -> uint256[N_COINS]:
Info
In case of any issues that result in a malfunctioning AMM state, users can safely withdraw liquidity using remove_liquidity
. Withdrawal is based on balances proportional to the AMM balances, as this function does not perform complex math.
Function to remove liquidity from the pool and burn _amount
of LP tokens. When removing liquidity with this function, no fees are charged as the coins are withdrawn in balanced proportions. This function also updates the xcp_oracle
since liquidity was removed.
Returns: withdrawn balances (uint256[N_COINS]
).
Emits: RemoveLiquidity
Input | Type | Description |
---|---|---|
_amount | uint256 | Amount of LP tokens to burn. |
min_amounts | uint256[N_COINS] | Minimum amounts of tokens to withdraw. |
receiver | address | Receiver of the coins; defaults to msg.sender . |
Source code
event RemoveLiquidity:
provider: indexed(address)
token_amounts: uint256[N_COINS]
token_supply: uint256
@external
@nonreentrant("lock")
def remove_liquidity(
_amount: uint256,
min_amounts: uint256[N_COINS],
receiver: address = msg.sender,
) -> uint256[N_COINS]:
"""
@notice This withdrawal method is very safe, does no complex math since
tokens are withdrawn in balanced proportions. No fees are charged.
@param _amount Amount of LP tokens to burn
@param min_amounts Minimum amounts of tokens to withdraw
@param receiver Address to send the withdrawn tokens to
@return uint256[3] Amount of pool tokens received by the `receiver`
"""
amount: uint256 = _amount
balances: uint256[N_COINS] = self.balances
withdraw_amounts: uint256[N_COINS] = empty(uint256[N_COINS])
# -------------------------------------------------------- Burn LP tokens.
total_supply: uint256 = self.totalSupply # <------ Get totalSupply before
self.burnFrom(msg.sender, _amount) # ---- reducing it with self.burnFrom.
# There are two cases for withdrawing tokens from the pool.
# Case 1. Withdrawal does not empty the pool.
# In this situation, D is adjusted proportional to the amount of
# LP tokens burnt. ERC20 tokens transferred is proportional
# to : (AMM balance * LP tokens in) / LP token total supply
# Case 2. Withdrawal empties the pool.
# In this situation, all tokens are withdrawn and the invariant
# is reset.
if amount == total_supply: # <----------------------------------- Case 2.
for i in range(N_COINS):
withdraw_amounts[i] = balances[i]
else: # <-------------------------------------------------------- Case 1.
amount -= 1 # <---- To prevent rounding errors, favor LPs a tiny bit.
for i in range(N_COINS):
withdraw_amounts[i] = balances[i] * amount / total_supply
assert withdraw_amounts[i] >= min_amounts[i]
D: uint256 = self.D
self.D = D - unsafe_div(D * amount, total_supply) # <----------- Reduce D
# proportional to the amount of tokens leaving. Since withdrawals are
# balanced, this is a simple subtraction. If amount == total_supply,
# D will be 0.
# ---------------------------------- Transfers ---------------------------
for i in range(N_COINS):
# _transfer_out updates self.balances here. Update to state occurs
# before external calls:
self._transfer_out(i, withdraw_amounts[i], receiver)
log RemoveLiquidity(msg.sender, withdraw_amounts, total_supply - _amount)
# --------------------------- Upkeep xcp oracle --------------------------
# Update xcp since liquidity was removed:
xp: uint256[N_COINS] = self.xp(self.balances, self.cached_price_scale)
last_xcp: uint256 = isqrt(xp[0] * xp[1]) # <----------- Cache it for now.
last_timestamp: uint256[2] = self._unpack_2(self.last_timestamp)
if last_timestamp[1] < block.timestamp:
cached_xcp_oracle: uint256 = self.cached_xcp_oracle
alpha: uint256 = MATH.wad_exp(
-convert(
unsafe_div(
unsafe_sub(block.timestamp, last_timestamp[1]) * 10**18,
self.xcp_ma_time # <---------- xcp ma time has is longer.
),
int256,
)
)
self.cached_xcp_oracle = unsafe_div(
last_xcp * (10**18 - alpha) + cached_xcp_oracle * alpha,
10**18
)
last_timestamp[1] = block.timestamp
# Pack and store timestamps:
self.last_timestamp = self._pack_2(last_timestamp[0], last_timestamp[1])
# Store last xcp
self.last_xcp = last_xcp
return withdraw_amounts
@external
@pure
def wad_exp(x: int256) -> int256:
"""
@dev Calculates the natural exponential function of a signed integer with
a precision of 1e18.
@notice Note that this function consumes about 810 gas units. The implementation
is inspired by Remco Bloemen's implementation under the MIT license here:
https://xn--2-umb.com/22/exp-ln.
@param x The 32-byte variable.
@return int256 The 32-byte calculation result.
"""
value: int256 = x
# If the result is `< 0.5`, we return zero. This happens when we have the following:
# "x <= floor(log(0.5e18) * 1e18) ~ -42e18".
if (x <= -42_139_678_854_452_767_551):
return empty(int256)
# When the result is "> (2 ** 255 - 1) / 1e18" we cannot represent it as a signed integer.
# This happens when "x >= floor(log((2 ** 255 - 1) / 1e18) * 1e18) ~ 135".
assert x < 135_305_999_368_893_231_589, "Math: wad_exp overflow"
# `x` is now in the range "(-42, 136) * 1e18". Convert to "(-42, 136) * 2 ** 96" for higher
# intermediate precision and a binary base. This base conversion is a multiplication with
# "1e18 / 2 ** 96 = 5 ** 18 / 2 ** 78".
value = unsafe_div(x << 78, 5 ** 18)
# Reduce the range of `x` to "(-½ ln 2, ½ ln 2) * 2 ** 96" by factoring out powers of two
# so that "exp(x) = exp(x') * 2 ** k", where `k` is a signer integer. Solving this gives
# "k = round(x / log(2))" and "x' = x - k * log(2)". Thus, `k` is in the range "[-61, 195]".
k: int256 = unsafe_add(unsafe_div(value << 96, 54_916_777_467_707_473_351_141_471_128), 2 ** 95) >> 96
value = unsafe_sub(value, unsafe_mul(k, 54_916_777_467_707_473_351_141_471_128))
# Evaluate using a "(6, 7)"-term rational approximation. Since `p` is monic,
# we will multiply by a scaling factor later.
y: int256 = unsafe_add(unsafe_mul(unsafe_add(value, 1_346_386_616_545_796_478_920_950_773_328), value) >> 96, 57_155_421_227_552_351_082_224_309_758_442)
p: int256 = unsafe_add(unsafe_mul(unsafe_add(unsafe_mul(unsafe_sub(unsafe_add(y, value), 94_201_549_194_550_492_254_356_042_504_812), y) >> 96,\
28_719_021_644_029_726_153_956_944_680_412_240), value), 4_385_272_521_454_847_904_659_076_985_693_276 << 96)
# We leave `p` in the "2 ** 192" base so that we do not have to scale it up
# again for the division.
q: int256 = unsafe_add(unsafe_mul(unsafe_sub(value, 2_855_989_394_907_223_263_936_484_059_900), value) >> 96, 50_020_603_652_535_783_019_961_831_881_945)
q = unsafe_sub(unsafe_mul(q, value) >> 96, 533_845_033_583_426_703_283_633_433_725_380)
q = unsafe_add(unsafe_mul(q, value) >> 96, 3_604_857_256_930_695_427_073_651_918_091_429)
q = unsafe_sub(unsafe_mul(q, value) >> 96, 14_423_608_567_350_463_180_887_372_962_807_573)
q = unsafe_add(unsafe_mul(q, value) >> 96, 26_449_188_498_355_588_339_934_803_723_976_023)
# The polynomial `q` has no zeros in the range because all its roots are complex.
# No scaling is required, as `p` is already "2 ** 96" too large. Also,
# `r` is in the range "(0.09, 0.25) * 2**96" after the division.
r: int256 = unsafe_div(p, q)
# To finalise the calculation, we have to multiply `r` by:
# - the scale factor "s = ~6.031367120",
# - the factor "2 ** k" from the range reduction, and
# - the factor "1e18 / 2 ** 96" for the base conversion.
# We do this all at once, with an intermediate result in "2**213" base,
# so that the final right shift always gives a positive value.
# Note that to circumvent Vyper's safecast feature for the potentially
# negative parameter value `r`, we first convert `r` to `bytes32` and
# subsequently to `uint256`. Remember that the EVM default behaviour is
# to use two's complement representation to handle signed integers.
return convert(unsafe_mul(convert(convert(r, bytes32), uint256), 3_822_833_074_963_236_453_042_738_258_902_158_003_155_416_615_667) >>\
convert(unsafe_sub(195, k), uint256), int256)
remove_liquidity_one_coin
¶
TwoCrypto.remove_liquidity_one_coin(token_amount: uint256, i: uint256, min_amount: uint256, receiver: address = msg.sender) -> uint256:
Function to burn token_amount
LP tokens and withdraw liquidity in a single token i
.
Returns: amount of coins withdrawn (uint256
).
Emits: RemoveLiquidityOne
Input | Type | Description |
---|---|---|
token_amount | uint256 | Amount of LP tokens to burn. |
i | uint256 | Index of the token to withdraw. |
min_amount | uint256 | Minimum amount of token to withdraw. |
receiver | address | Receiver of the coins; defaults to msg.sender . |
Source code
event RemoveLiquidityOne:
provider: indexed(address)
token_amount: uint256
coin_index: uint256
coin_amount: uint256
approx_fee: uint256
packed_price_scale: uint256
@external
@nonreentrant("lock")
def remove_liquidity_one_coin(
token_amount: uint256,
i: uint256,
min_amount: uint256,
receiver: address = msg.sender
) -> uint256:
"""
@notice Withdraw liquidity in a single token.
Involves fees (lower than swap fees).
@dev This operation also involves an admin fee claim.
@param token_amount Amount of LP tokens to burn
@param i Index of the token to withdraw
@param min_amount Minimum amount of token to withdraw.
@param receiver Address to send the withdrawn tokens to
@return Amount of tokens at index i received by the `receiver`
"""
self._claim_admin_fees() # <--------- Auto-claim admin fees occasionally.
A_gamma: uint256[2] = self._A_gamma()
dy: uint256 = 0
D: uint256 = 0
p: uint256 = 0
xp: uint256[N_COINS] = empty(uint256[N_COINS])
approx_fee: uint256 = 0
# ------------------------------------------------------------------------
dy, D, xp, approx_fee = self._calc_withdraw_one_coin(
A_gamma,
token_amount,
i,
(self.future_A_gamma_time > block.timestamp), # <------- During ramps
) # we need to update D.
assert dy >= min_amount, "Slippage"
# ---------------------------- State Updates -----------------------------
# Burn user's tokens:
self.burnFrom(msg.sender, token_amount)
packed_price_scale: uint256 = self.tweak_price(A_gamma, xp, D, 0)
# Safe to use D from _calc_withdraw_one_coin here ---^
# ------------------------- Transfers ------------------------------------
# _transfer_out updates self.balances here. Update to state occurs before
# external calls:
self._transfer_out(i, dy, receiver)
log RemoveLiquidityOne(
msg.sender, token_amount, i, dy, approx_fee, packed_price_scale
)
return dy
@internal
@view
def _calc_withdraw_one_coin(
A_gamma: uint256[2],
token_amount: uint256,
i: uint256,
update_D: bool,
) -> (uint256, uint256, uint256[N_COINS], uint256):
token_supply: uint256 = self.totalSupply
assert token_amount <= token_supply # dev: token amount more than supply
assert i < N_COINS # dev: coin out of range
xx: uint256[N_COINS] = self.balances
D0: uint256 = 0
# -------------------------- Calculate D0 and xp -------------------------
price_scale_i: uint256 = self.cached_price_scale * PRECISIONS[1]
xp: uint256[N_COINS] = [
xx[0] * PRECISIONS[0],
unsafe_div(xx[1] * price_scale_i, PRECISION)
]
if i == 0:
price_scale_i = PRECISION * PRECISIONS[0]
if update_D: # <-------------- D is updated if pool is undergoing a ramp.
D0 = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0)
else:
D0 = self.D
D: uint256 = D0
# -------------------------------- Fee Calc ------------------------------
# Charge fees on D. Roughly calculate xp[i] after withdrawal and use that
# to calculate fee. Precision is not paramount here: we just want a
# behavior where the higher the imbalance caused the more fee the AMM
# charges.
# xp is adjusted assuming xp[0] ~= xp[1] ~= x[2], which is usually not the
# case. We charge self._fee(xp), where xp is an imprecise adjustment post
# withdrawal in one coin. If the withdraw is too large: charge max fee by
# default. This is because the fee calculation will otherwise underflow.
xp_imprecise: uint256[N_COINS] = xp
xp_correction: uint256 = xp[i] * N_COINS * token_amount / token_supply
fee: uint256 = self._unpack_3(self.packed_fee_params)[1] # <- self.out_fee.
if xp_correction < xp_imprecise[i]:
xp_imprecise[i] -= xp_correction
fee = self._fee(xp_imprecise)
dD: uint256 = unsafe_div(token_amount * D, token_supply)
D_fee: uint256 = fee * dD / (2 * 10**10) + 1 # <------- Actual fee on D.
# --------- Calculate `approx_fee` (assuming balanced state) in ith token.
# -------------------------------- We only need this for fee in the event.
approx_fee: uint256 = N_COINS * D_fee * xx[i] / D # <------------------<---------- TODO: Check math.
# ------------------------------------------------------------------------
D -= (dD - D_fee) # <----------------------------------- Charge fee on D.
# --------------------------------- Calculate `y_out`` with `(D - D_fee)`.
y: uint256 = MATH.get_y(A_gamma[0], A_gamma[1], xp, D, i)[0]
dy: uint256 = (xp[i] - y) * PRECISION / price_scale_i
xp[i] = y
return dy, D, xp, approx_fee
@view
@internal
def _A_gamma() -> uint256[2]:
t1: uint256 = self.future_A_gamma_time
A_gamma_1: uint256 = self.future_A_gamma
gamma1: uint256 = A_gamma_1 & 2**128 - 1
A1: uint256 = A_gamma_1 >> 128
if block.timestamp < t1:
# --------------- Handle ramping up and down of A --------------------
A_gamma_0: uint256 = self.initial_A_gamma
t0: uint256 = self.initial_A_gamma_time
t1 -= t0
t0 = block.timestamp - t0
t2: uint256 = t1 - t0
A1 = ((A_gamma_0 >> 128) * t2 + A1 * t0) / t1
gamma1 = ((A_gamma_0 & 2**128 - 1) * t2 + gamma1 * t0) / t1
return [A1, gamma1]
@external
@view
def newton_D(ANN: uint256, gamma: uint256, x_unsorted: uint256[N_COINS], K0_prev: uint256 = 0) -> uint256:
"""
Finding the invariant using Newton method.
ANN is higher by the factor A_MULTIPLIER
ANN is already A * N**N
"""
# Safety checks
assert ANN > MIN_A - 1 and ANN < MAX_A + 1 # dev: unsafe values A
assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
# Initial value of invariant D is that for constant-product invariant
x: uint256[N_COINS] = x_unsorted
if x[0] < x[1]:
x = [x_unsorted[1], x_unsorted[0]]
assert x[0] > 10**9 - 1 and x[0] < 10**15 * 10**18 + 1 # dev: unsafe values x[0]
assert unsafe_div(x[1] * 10**18, x[0]) > 10**14 - 1 # dev: unsafe values x[i] (input)
S: uint256 = unsafe_add(x[0], x[1]) # can unsafe add here because we checked x[0] bounds
D: uint256 = 0
if K0_prev == 0:
D = N_COINS * isqrt(unsafe_mul(x[0], x[1]))
else:
# D = isqrt(x[0] * x[1] * 4 / K0_prev * 10**18)
D = isqrt(unsafe_mul(unsafe_div(unsafe_mul(unsafe_mul(4, x[0]), x[1]), K0_prev), 10**18))
if S < D:
D = S
__g1k0: uint256 = gamma + 10**18
diff: uint256 = 0
for i in range(255):
D_prev: uint256 = D
assert D > 0
# Unsafe division by D and D_prev is now safe
# K0: uint256 = 10**18
# for _x in x:
# K0 = K0 * _x * N_COINS / D
# collapsed for 2 coins
K0: uint256 = unsafe_div(unsafe_div((10**18 * N_COINS**2) * x[0], D) * x[1], D)
_g1k0: uint256 = __g1k0
if _g1k0 > K0:
_g1k0 = unsafe_add(unsafe_sub(_g1k0, K0), 1) # > 0
else:
_g1k0 = unsafe_add(unsafe_sub(K0, _g1k0), 1) # > 0
# D / (A * N**N) * _g1k0**2 / gamma**2
mul1: uint256 = unsafe_div(unsafe_div(unsafe_div(10**18 * D, gamma) * _g1k0, gamma) * _g1k0 * A_MULTIPLIER, ANN)
# 2*N*K0 / _g1k0
mul2: uint256 = unsafe_div(((2 * 10**18) * N_COINS) * K0, _g1k0)
# calculate neg_fprime. here K0 > 0 is being validated (safediv).
neg_fprime: uint256 = (S + unsafe_div(S * mul2, 10**18)) + mul1 * N_COINS / K0 - unsafe_div(mul2 * D, 10**18)
# D -= f / fprime; neg_fprime safediv being validated
D_plus: uint256 = D * (neg_fprime + S) / neg_fprime
D_minus: uint256 = unsafe_div(D * D, neg_fprime)
if 10**18 > K0:
D_minus += unsafe_div(unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18) * unsafe_sub(10**18, K0), K0)
else:
D_minus -= unsafe_div(unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18) * unsafe_sub(K0, 10**18), K0)
if D_plus > D_minus:
D = unsafe_sub(D_plus, D_minus)
else:
D = unsafe_div(unsafe_sub(D_minus, D_plus), 2)
if D > D_prev:
diff = unsafe_sub(D, D_prev)
else:
diff = unsafe_sub(D_prev, D)
if diff * 10**14 < max(10**16, D): # Could reduce precision for gas efficiency here
for _x in x:
frac: uint256 = _x * 10**18 / D
assert (frac >= 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe values x[i]
return D
raise "Did not converge"
@external
@pure
def get_y(
_ANN: uint256,
_gamma: uint256,
_x: uint256[N_COINS],
_D: uint256,
i: uint256
) -> uint256[2]:
# Safety checks
assert _ANN > MIN_A - 1 and _ANN < MAX_A + 1 # dev: unsafe values A
assert _gamma > MIN_GAMMA - 1 and _gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
assert _D > 10**17 - 1 and _D < 10**15 * 10**18 + 1 # dev: unsafe values D
ANN: int256 = convert(_ANN, int256)
gamma: int256 = convert(_gamma, int256)
D: int256 = convert(_D, int256)
x_j: int256 = convert(_x[1 - i], int256)
gamma2: int256 = unsafe_mul(gamma, gamma)
# savediv by x_j done here:
y: int256 = D**2 / (x_j * N_COINS**2)
# K0_i: int256 = (10**18 * N_COINS) * x_j / D
K0_i: int256 = unsafe_div(10**18 * N_COINS * x_j, D)
assert (K0_i > 10**16 * N_COINS - 1) and (K0_i < 10**20 * N_COINS + 1) # dev: unsafe values x[i]
ann_gamma2: int256 = ANN * gamma2
# a = 10**36 / N_COINS**2
a: int256 = 10**32
# b = ANN*D*gamma2/4/10000/x_j/10**4 - 10**32*3 - 2*gamma*10**14
b: int256 = (
D*ann_gamma2/400000000/x_j
- convert(unsafe_mul(10**32, 3), int256)
- unsafe_mul(unsafe_mul(2, gamma), 10**14)
)
# c = 10**32*3 + 4*gamma*10**14 + gamma2/10**4 + 4*ANN*gamma2*x_j/D/10000/4/10**4 - 4*ANN*gamma2/10000/4/10**4
c: int256 = (
unsafe_mul(10**32, convert(3, int256))
+ unsafe_mul(unsafe_mul(4, gamma), 10**14)
+ unsafe_div(gamma2, 10**4)
+ unsafe_div(unsafe_div(unsafe_mul(4, ann_gamma2), 400000000) * x_j, D)
- unsafe_div(unsafe_mul(4, ann_gamma2), 400000000)
)
# d = -(10**18+gamma)**2 / 10**4
d: int256 = -unsafe_div(unsafe_add(10**18, gamma) ** 2, 10**4)
# delta0: int256 = 3*a*c/b - b
delta0: int256 = 3 * a * c / b - b # safediv by b
# delta1: int256 = 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1: int256 = 3 * delta0 + b - 27*a**2/b*d/b
divider: int256 = 1
threshold: int256 = min(min(abs(delta0), abs(delta1)), a)
if threshold > 10**48:
divider = 10**30
elif threshold > 10**46:
divider = 10**28
elif threshold > 10**44:
divider = 10**26
elif threshold > 10**42:
divider = 10**24
elif threshold > 10**40:
divider = 10**22
elif threshold > 10**38:
divider = 10**20
elif threshold > 10**36:
divider = 10**18
elif threshold > 10**34:
divider = 10**16
elif threshold > 10**32:
divider = 10**14
elif threshold > 10**30:
divider = 10**12
elif threshold > 10**28:
divider = 10**10
elif threshold > 10**26:
divider = 10**8
elif threshold > 10**24:
divider = 10**6
elif threshold > 10**20:
divider = 10**2
a = unsafe_div(a, divider)
b = unsafe_div(b, divider)
c = unsafe_div(c, divider)
d = unsafe_div(d, divider)
# delta0 = 3*a*c/b - b: here we can do more unsafe ops now:
delta0 = unsafe_div(unsafe_mul(unsafe_mul(3, a), c), b) - b
# delta1 = 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1 = 3 * delta0 + b - unsafe_div(unsafe_mul(unsafe_div(unsafe_mul(27, a**2), b), d), b)
# sqrt_arg: int256 = delta1**2 + 4*delta0**2/b*delta0
sqrt_arg: int256 = delta1**2 + unsafe_mul(unsafe_div(4*delta0**2, b), delta0)
sqrt_val: int256 = 0
if sqrt_arg > 0:
sqrt_val = convert(isqrt(convert(sqrt_arg, uint256)), int256)
else:
return [
self._newton_y(_ANN, _gamma, _x, _D, i),
0
]
b_cbrt: int256 = 0
if b > 0:
b_cbrt = convert(self._cbrt(convert(b, uint256)), int256)
else:
b_cbrt = -convert(self._cbrt(convert(-b, uint256)), int256)
second_cbrt: int256 = 0
if delta1 > 0:
# second_cbrt = convert(self._cbrt(convert((delta1 + sqrt_val), uint256) / 2), int256)
second_cbrt = convert(self._cbrt(convert(unsafe_add(delta1, sqrt_val), uint256) / 2), int256)
else:
# second_cbrt = -convert(self._cbrt(convert(unsafe_sub(sqrt_val, delta1), uint256) / 2), int256)
second_cbrt = -convert(self._cbrt(unsafe_div(convert(unsafe_sub(sqrt_val, delta1), uint256), 2)), int256)
# C1: int256 = b_cbrt**2/10**18*second_cbrt/10**18
C1: int256 = unsafe_div(unsafe_mul(unsafe_div(b_cbrt**2, 10**18), second_cbrt), 10**18)
# root: int256 = (10**18*C1 - 10**18*b - 10**18*b*delta0/C1)/(3*a), keep 2 safe ops here.
root: int256 = (unsafe_mul(10**18, C1) - unsafe_mul(10**18, b) - unsafe_mul(10**18, b)/C1*delta0)/unsafe_mul(3, a)
# y_out: uint256[2] = [
# convert(D**2/x_j*root/4/10**18, uint256), # <--- y
# convert(root, uint256) # <----------------------- K0Prev
# ]
y_out: uint256[2] = [convert(unsafe_div(unsafe_div(unsafe_mul(unsafe_div(D**2, x_j), root), 4), 10**18), uint256), convert(root, uint256)]
frac: uint256 = unsafe_div(y_out[0] * 10**18, _D)
assert (frac >= 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe value for y
return y_out
calc_token_amount
¶
TwoCrypto.calc_token_amount(amounts: uint256[N_COINS], deposit: bool) -> uint256:
Function to calculate the LP tokens to be minted or burned for depositing or removing amounts
of coins. This method takes fees into consideration.
Returns: amount of LP tokens deposited or withdrawn (uint256
).
Input | Type | Description |
---|---|---|
amounts | uint256[N_COINS] | Amounts of tokens being deposited or withdrawn. |
deposit | bool | true for deposit, false for withdrawal. |
Source code
interface Factory:
def views_implementation() -> address: view
@external
@view
def calc_token_amount(amounts: uint256[N_COINS], deposit: bool) -> uint256:
"""
@notice Calculate LP tokens minted or to be burned for depositing or
removing `amounts` of coins
@dev Includes fee.
@param amounts Amounts of tokens being deposited or withdrawn
@param deposit True if it is a deposit action, False if withdrawn.
@return uint256 Amount of LP tokens deposited or withdrawn.
"""
view_contract: address = factory.views_implementation()
return Views(view_contract).calc_token_amount(amounts, deposit, self)
@external
@view
def calc_token_fee(
amounts: uint256[N_COINS], xp: uint256[N_COINS]
) -> uint256:
"""
@notice Returns the fee charged on the given amounts for add_liquidity.
@param amounts The amounts of coins being added to the pool.
@param xp The current balances of the pool multiplied by coin precisions.
@return uint256 Fee charged.
"""
return self._calc_token_fee(amounts, xp)
@view
@internal
def _calc_token_fee(amounts: uint256[N_COINS], xp: uint256[N_COINS]) -> uint256:
# fee = sum(amounts_i - avg(amounts)) * fee' / sum(amounts)
fee: uint256 = unsafe_div(
unsafe_mul(self._fee(xp), N_COINS),
unsafe_mul(4, unsafe_sub(N_COINS, 1))
)
S: uint256 = 0
for _x in amounts:
S += _x
avg: uint256 = unsafe_div(S, N_COINS)
Sdiff: uint256 = 0
for _x in amounts:
if _x > avg:
Sdiff += unsafe_sub(_x, avg)
else:
Sdiff += unsafe_sub(avg, _x)
return fee * Sdiff / S + NOISE_FEE
@view
@external
def calc_token_amount(
amounts: uint256[N_COINS], deposit: bool, swap: address
) -> uint256:
d_token: uint256 = 0
amountsp: uint256[N_COINS] = empty(uint256[N_COINS])
xp: uint256[N_COINS] = empty(uint256[N_COINS])
d_token, amountsp, xp = self._calc_dtoken_nofee(amounts, deposit, swap)
d_token -= (
Curve(swap).calc_token_fee(amountsp, xp) * d_token / 10**10 + 1
)
return d_token
@internal
@view
def _calc_dtoken_nofee(
amounts: uint256[N_COINS], deposit: bool, swap: address
) -> (uint256, uint256[N_COINS], uint256[N_COINS]):
math: Math = Curve(swap).MATH()
xp: uint256[N_COINS] = empty(uint256[N_COINS])
precisions: uint256[N_COINS] = empty(uint256[N_COINS])
price_scale: uint256 = 0
D0: uint256 = 0
token_supply: uint256 = 0
A: uint256 = 0
gamma: uint256 = 0
xp, D0, token_supply, price_scale, A, gamma, precisions = self._prep_calc(swap)
amountsp: uint256[N_COINS] = amounts
if deposit:
for k in range(N_COINS):
xp[k] += amounts[k]
else:
for k in range(N_COINS):
xp[k] -= amounts[k]
xp = [
xp[0] * precisions[0],
xp[1] * price_scale * precisions[1] / PRECISION
]
amountsp = [
amountsp[0]* precisions[0],
amountsp[1] * price_scale * precisions[1] / PRECISION
]
D: uint256 = math.newton_D(A, gamma, xp, 0)
d_token: uint256 = token_supply * D / D0
if deposit:
d_token -= token_supply
else:
d_token = token_supply - d_token
return d_token, amountsp, xp
calc_withdraw_one_coin
¶
TwoCrypto.calc_withdraw_one_coin(token_amount: uint256, i: uint256) -> uint256:
Function to calculate the amount of output token i
when burning token_amount
of LP tokens. This method takes fees into consideration.
Returns: amount of tokens to receive (uint256
).
Input | Type | Description |
---|---|---|
token_amount | uint256 | Amount of LP tokens burned. |
i | uint256 | Index of the coin to withdraw. |
Source code
@view
@external
def calc_withdraw_one_coin(token_amount: uint256, i: uint256) -> uint256:
"""
@notice Calculates output tokens with fee
@param token_amount LP Token amount to burn
@param i token in which liquidity is withdrawn
@return uint256 Amount of ith tokens received for burning token_amount LP tokens.
"""
return self._calc_withdraw_one_coin(
self._A_gamma(),
token_amount,
i,
(self.future_A_gamma_time > block.timestamp)
)[0]
@internal
@view
def _calc_withdraw_one_coin(
A_gamma: uint256[2],
token_amount: uint256,
i: uint256,
update_D: bool,
) -> (uint256, uint256, uint256[N_COINS], uint256):
token_supply: uint256 = self.totalSupply
assert token_amount <= token_supply # dev: token amount more than supply
assert i < N_COINS # dev: coin out of range
xx: uint256[N_COINS] = self.balances
D0: uint256 = 0
# -------------------------- Calculate D0 and xp -------------------------
price_scale_i: uint256 = self.cached_price_scale * PRECISIONS[1]
xp: uint256[N_COINS] = [
xx[0] * PRECISIONS[0],
unsafe_div(xx[1] * price_scale_i, PRECISION)
]
if i == 0:
price_scale_i = PRECISION * PRECISIONS[0]
if update_D: # <-------------- D is updated if pool is undergoing a ramp.
D0 = MATH.newton_D(A_gamma[0], A_gamma[1], xp, 0)
else:
D0 = self.D
D: uint256 = D0
# -------------------------------- Fee Calc ------------------------------
# Charge fees on D. Roughly calculate xp[i] after withdrawal and use that
# to calculate fee. Precision is not paramount here: we just want a
# behavior where the higher the imbalance caused the more fee the AMM
# charges.
# xp is adjusted assuming xp[0] ~= xp[1] ~= x[2], which is usually not the
# case. We charge self._fee(xp), where xp is an imprecise adjustment post
# withdrawal in one coin. If the withdraw is too large: charge max fee by
# default. This is because the fee calculation will otherwise underflow.
xp_imprecise: uint256[N_COINS] = xp
xp_correction: uint256 = xp[i] * N_COINS * token_amount / token_supply
fee: uint256 = self._unpack_3(self.packed_fee_params)[1] # <- self.out_fee.
if xp_correction < xp_imprecise[i]:
xp_imprecise[i] -= xp_correction
fee = self._fee(xp_imprecise)
dD: uint256 = unsafe_div(token_amount * D, token_supply)
D_fee: uint256 = fee * dD / (2 * 10**10) + 1 # <------- Actual fee on D.
# --------- Calculate `approx_fee` (assuming balanced state) in ith token.
# -------------------------------- We only need this for fee in the event.
approx_fee: uint256 = N_COINS * D_fee * xx[i] / D # <------------------<---------- TODO: Check math.
# ------------------------------------------------------------------------
D -= (dD - D_fee) # <----------------------------------- Charge fee on D.
# --------------------------------- Calculate `y_out`` with `(D - D_fee)`.
y: uint256 = MATH.get_y(A_gamma[0], A_gamma[1], xp, D, i)[0]
dy: uint256 = (xp[i] - y) * PRECISION / price_scale_i
xp[i] = y
return dy, D, xp, approx_fee
@external
@view
def newton_D(ANN: uint256, gamma: uint256, x_unsorted: uint256[N_COINS], K0_prev: uint256 = 0) -> uint256:
"""
Finding the invariant using Newton method.
ANN is higher by the factor A_MULTIPLIER
ANN is already A * N**N
"""
# Safety checks
assert ANN > MIN_A - 1 and ANN < MAX_A + 1 # dev: unsafe values A
assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
# Initial value of invariant D is that for constant-product invariant
x: uint256[N_COINS] = x_unsorted
if x[0] < x[1]:
x = [x_unsorted[1], x_unsorted[0]]
assert x[0] > 10**9 - 1 and x[0] < 10**15 * 10**18 + 1 # dev: unsafe values x[0]
assert unsafe_div(x[1] * 10**18, x[0]) > 10**14 - 1 # dev: unsafe values x[i] (input)
S: uint256 = unsafe_add(x[0], x[1]) # can unsafe add here because we checked x[0] bounds
D: uint256 = 0
if K0_prev == 0:
D = N_COINS * isqrt(unsafe_mul(x[0], x[1]))
else:
# D = isqrt(x[0] * x[1] * 4 / K0_prev * 10**18)
D = isqrt(unsafe_mul(unsafe_div(unsafe_mul(unsafe_mul(4, x[0]), x[1]), K0_prev), 10**18))
if S < D:
D = S
__g1k0: uint256 = gamma + 10**18
diff: uint256 = 0
for i in range(255):
D_prev: uint256 = D
assert D > 0
# Unsafe division by D and D_prev is now safe
# K0: uint256 = 10**18
# for _x in x:
# K0 = K0 * _x * N_COINS / D
# collapsed for 2 coins
K0: uint256 = unsafe_div(unsafe_div((10**18 * N_COINS**2) * x[0], D) * x[1], D)
_g1k0: uint256 = __g1k0
if _g1k0 > K0:
_g1k0 = unsafe_add(unsafe_sub(_g1k0, K0), 1) # > 0
else:
_g1k0 = unsafe_add(unsafe_sub(K0, _g1k0), 1) # > 0
# D / (A * N**N) * _g1k0**2 / gamma**2
mul1: uint256 = unsafe_div(unsafe_div(unsafe_div(10**18 * D, gamma) * _g1k0, gamma) * _g1k0 * A_MULTIPLIER, ANN)
# 2*N*K0 / _g1k0
mul2: uint256 = unsafe_div(((2 * 10**18) * N_COINS) * K0, _g1k0)
# calculate neg_fprime. here K0 > 0 is being validated (safediv).
neg_fprime: uint256 = (S + unsafe_div(S * mul2, 10**18)) + mul1 * N_COINS / K0 - unsafe_div(mul2 * D, 10**18)
# D -= f / fprime; neg_fprime safediv being validated
D_plus: uint256 = D * (neg_fprime + S) / neg_fprime
D_minus: uint256 = unsafe_div(D * D, neg_fprime)
if 10**18 > K0:
D_minus += unsafe_div(unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18) * unsafe_sub(10**18, K0), K0)
else:
D_minus -= unsafe_div(unsafe_div(D * unsafe_div(mul1, neg_fprime), 10**18) * unsafe_sub(K0, 10**18), K0)
if D_plus > D_minus:
D = unsafe_sub(D_plus, D_minus)
else:
D = unsafe_div(unsafe_sub(D_minus, D_plus), 2)
if D > D_prev:
diff = unsafe_sub(D, D_prev)
else:
diff = unsafe_sub(D_prev, D)
if diff * 10**14 < max(10**16, D): # Could reduce precision for gas efficiency here
for _x in x:
frac: uint256 = _x * 10**18 / D
assert (frac >= 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe values x[i]
return D
raise "Did not converge"
@external
@pure
def get_y(
_ANN: uint256,
_gamma: uint256,
_x: uint256[N_COINS],
_D: uint256,
i: uint256
) -> uint256[2]:
# Safety checks
assert _ANN > MIN_A - 1 and _ANN < MAX_A + 1 # dev: unsafe values A
assert _gamma > MIN_GAMMA - 1 and _gamma < MAX_GAMMA + 1 # dev: unsafe values gamma
assert _D > 10**17 - 1 and _D < 10**15 * 10**18 + 1 # dev: unsafe values D
ANN: int256 = convert(_ANN, int256)
gamma: int256 = convert(_gamma, int256)
D: int256 = convert(_D, int256)
x_j: int256 = convert(_x[1 - i], int256)
gamma2: int256 = unsafe_mul(gamma, gamma)
# savediv by x_j done here:
y: int256 = D**2 / (x_j * N_COINS**2)
# K0_i: int256 = (10**18 * N_COINS) * x_j / D
K0_i: int256 = unsafe_div(10**18 * N_COINS * x_j, D)
assert (K0_i > 10**16 * N_COINS - 1) and (K0_i < 10**20 * N_COINS + 1) # dev: unsafe values x[i]
ann_gamma2: int256 = ANN * gamma2
# a = 10**36 / N_COINS**2
a: int256 = 10**32
# b = ANN*D*gamma2/4/10000/x_j/10**4 - 10**32*3 - 2*gamma*10**14
b: int256 = (
D*ann_gamma2/400000000/x_j
- convert(unsafe_mul(10**32, 3), int256)
- unsafe_mul(unsafe_mul(2, gamma), 10**14)
)
# c = 10**32*3 + 4*gamma*10**14 + gamma2/10**4 + 4*ANN*gamma2*x_j/D/10000/4/10**4 - 4*ANN*gamma2/10000/4/10**4
c: int256 = (
unsafe_mul(10**32, convert(3, int256))
+ unsafe_mul(unsafe_mul(4, gamma), 10**14)
+ unsafe_div(gamma2, 10**4)
+ unsafe_div(unsafe_div(unsafe_mul(4, ann_gamma2), 400000000) * x_j, D)
- unsafe_div(unsafe_mul(4, ann_gamma2), 400000000)
)
# d = -(10**18+gamma)**2 / 10**4
d: int256 = -unsafe_div(unsafe_add(10**18, gamma) ** 2, 10**4)
# delta0: int256 = 3*a*c/b - b
delta0: int256 = 3 * a * c / b - b # safediv by b
# delta1: int256 = 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1: int256 = 3 * delta0 + b - 27*a**2/b*d/b
divider: int256 = 1
threshold: int256 = min(min(abs(delta0), abs(delta1)), a)
if threshold > 10**48:
divider = 10**30
elif threshold > 10**46:
divider = 10**28
elif threshold > 10**44:
divider = 10**26
elif threshold > 10**42:
divider = 10**24
elif threshold > 10**40:
divider = 10**22
elif threshold > 10**38:
divider = 10**20
elif threshold > 10**36:
divider = 10**18
elif threshold > 10**34:
divider = 10**16
elif threshold > 10**32:
divider = 10**14
elif threshold > 10**30:
divider = 10**12
elif threshold > 10**28:
divider = 10**10
elif threshold > 10**26:
divider = 10**8
elif threshold > 10**24:
divider = 10**6
elif threshold > 10**20:
divider = 10**2
a = unsafe_div(a, divider)
b = unsafe_div(b, divider)
c = unsafe_div(c, divider)
d = unsafe_div(d, divider)
# delta0 = 3*a*c/b - b: here we can do more unsafe ops now:
delta0 = unsafe_div(unsafe_mul(unsafe_mul(3, a), c), b) - b
# delta1 = 9*a*c/b - 2*b - 27*a**2/b*d/b
delta1 = 3 * delta0 + b - unsafe_div(unsafe_mul(unsafe_div(unsafe_mul(27, a**2), b), d), b)
# sqrt_arg: int256 = delta1**2 + 4*delta0**2/b*delta0
sqrt_arg: int256 = delta1**2 + unsafe_mul(unsafe_div(4*delta0**2, b), delta0)
sqrt_val: int256 = 0
if sqrt_arg > 0:
sqrt_val = convert(isqrt(convert(sqrt_arg, uint256)), int256)
else:
return [
self._newton_y(_ANN, _gamma, _x, _D, i),
0
]
b_cbrt: int256 = 0
if b > 0:
b_cbrt = convert(self._cbrt(convert(b, uint256)), int256)
else:
b_cbrt = -convert(self._cbrt(convert(-b, uint256)), int256)
second_cbrt: int256 = 0
if delta1 > 0:
# second_cbrt = convert(self._cbrt(convert((delta1 + sqrt_val), uint256) / 2), int256)
second_cbrt = convert(self._cbrt(convert(unsafe_add(delta1, sqrt_val), uint256) / 2), int256)
else:
# second_cbrt = -convert(self._cbrt(convert(unsafe_sub(sqrt_val, delta1), uint256) / 2), int256)
second_cbrt = -convert(self._cbrt(unsafe_div(convert(unsafe_sub(sqrt_val, delta1), uint256), 2)), int256)
# C1: int256 = b_cbrt**2/10**18*second_cbrt/10**18
C1: int256 = unsafe_div(unsafe_mul(unsafe_div(b_cbrt**2, 10**18), second_cbrt), 10**18)
# root: int256 = (10**18*C1 - 10**18*b - 10**18*b*delta0/C1)/(3*a), keep 2 safe ops here.
root: int256 = (unsafe_mul(10**18, C1) - unsafe_mul(10**18, b) - unsafe_mul(10**18, b)/C1*delta0)/unsafe_mul(3, a)
# y_out: uint256[2] = [
# convert(D**2/x_j*root/4/10**18, uint256), # <--- y
# convert(root, uint256) # <----------------------- K0Prev
# ]
y_out: uint256[2] = [convert(unsafe_div(unsafe_div(unsafe_mul(unsafe_div(D**2, x_j), root), 4), 10**18), uint256), convert(root, uint256)]
frac: uint256 = unsafe_div(y_out[0] * 10**18, _D)
assert (frac >= 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe value for y
return y_out
Fees and Pool Profits¶
The cryptoswap algorithm uses different fees, such as fee
, mid_fee
, out_fee
, or fee_gamma
to determine the fees charged, more on that here. All Fee values are denominated in 1e10 and can be changed by the admin.
Additionally, just as for other curve pools, there is an ADMIN_FEE
, which is hardcoded to 50%. All twocrypto-ng pools share a universal fee_receiver
, which is determined within the Factory contract. Unlike for most other Curve pools, there is no external method to claim the admin fees. They are claimed when removing liquidity single sided.
xcp_profit
, xcp_profit_a
, and last_xcp
are used for tracking pool profits, which is necessary for the pool's rebalancing mechanism. These values are denominated in 1e18.
fee
¶
TwoCrypto.fee() -> uint256:
Getter for the fee charged by the pool at the current state.
Returns: fee in bps (uint256
).
Source code
@external
@view
def fee() -> uint256:
"""
@notice Returns the fee charged by the pool at current state.
@dev Not to be confused with the fee charged at liquidity action, since
there the fee is calculated on `xp` AFTER liquidity is added or
removed.
@return uint256 fee bps.
"""
return self._fee(self.xp(self.balances, self.cached_price_scale))
@internal
@view
def _fee(xp: uint256[N_COINS]) -> uint256:
fee_params: uint256[3] = self._unpack_3(self.packed_fee_params)
f: uint256 = xp[0] + xp[1]
f = fee_params[2] * 10**18 / (
fee_params[2] + 10**18 -
(10**18 * N_COINS**N_COINS) * xp[0] / f * xp[1] / f
)
return unsafe_div(
fee_params[0] * f + fee_params[1] * (10**18 - f),
10**18
)
mid_fee
¶
TwoCrypto.mid_fee() -> uint256:
Getter for the mid_fee
. This fee is the minimum fee and is charged when the pool is completely balanced.
Returns: mid fee (uint256
).
Source code
out_fee
¶
TwoCrypto.out_fee() -> uint256:
Getter for the out_fee
. This fee is the maximum fee and is charged when the pool is completely imbalanced.
Returns: out fee (uint256
).
Source code
fee_gamma
¶
TwoCrypto.fee_gamma() -> uint256:
Getter for the current fee_gamma
. This parameter modifies the rate at which fees rise as imbalance intensifies. Smaller values result in rapid fee hikes with growing imbalances, while larger values lead to more gradual increments in fees as imbalance expands.
Returns: fee gamma (uint256
).
Source code
packed_fee_params
¶
TwoCrypto.packed_fee_params() -> uint256: view
Getter for the packed fee parameters.
Returns: packed fee params (uint256
).
Source code
# Fee params that determine dynamic fees:
packed_fee_params: public(uint256) # <---- Packs mid_fee, out_fee, fee_gamma.
@external
def __init__(
_name: String[64],
_symbol: String[32],
_coins: address[N_COINS],
_math: address,
_salt: bytes32,
packed_precisions: uint256,
packed_gamma_A: uint256,
packed_fee_params: uint256,
packed_rebalancing_params: uint256,
initial_price: uint256,
):
...
self.packed_fee_params = packed_fee_params # <-------------- Contains Fee
# params: mid_fee, out_fee and fee_gamma.
...
ADMIN_FEE
¶
TwoCrypto.packed_fee_params() -> uint256: view
Getter for the admin fee of the pool. This value is hardcoded to 50% (5000000000) of the earned fees and can not be changed.
Returns: admin fee (uint256
).
fee_receiver
¶
TwoCrypto.fee_receiver() -> address:
Getter for the fee receiver of the admin fees. This address is set within the TwoCrypto-NG Factory. Every pool created through the Factory has the same fee receiver.
Returns: fee receiver (address
).
Source code
xcp_profit
¶
TwoCrypto.xcp_profit() -> uint256: view
Getter for the current pool profits.
Returns: current profits (uint256
).
xcp_profit_a
¶
TwoCrypto.xcp_profit_a() -> uint256: view
Getter for the full profit at the last claim of admin fees.
Returns: profit at last claim (uint256
).
Source code
xcp_profit_a: public(uint256) # <--- Full profit at last claim of admin fees.
@external
def __init__(
_name: String[64],
_symbol: String[32],
_coins: address[N_COINS],
_math: address,
_salt: bytes32,
packed_precisions: uint256,
packed_gamma_A: uint256,
packed_fee_params: uint256,
packed_rebalancing_params: uint256,
initial_price: uint256,
):
...
self.xcp_profit_a = 10**18
...
last_xcp
¶
TwoCrypto.last_xcp() -> uint256: view
Getter for the last xcp action. This variable is updated by calling tweak_price
or remove_liquidity
.
Returns: timestamp of last xcp action (uint256
).
Price Scaling¶
Curve v2 pools automatically adjust liquidity to optimize depth close to the prevailing market rates, reducing slippage. More here. Price scaling parameter can be adjusted by the admin.
price_scale
¶
TwoCrypto.price_scale() -> uint256:
Getter for the price scale of the coin at index 1 with regard to the coin at index 0. The price scale determines the price band around which liquidity is concentrated.
Returns: price scale (uint256
).
Source code
cached_price_scale: uint256 # <------------------------ Internal price scale.
@external
@view
@nonreentrant("lock")
def price_scale() -> uint256:
"""
@notice Returns the price scale of the coin at index `k` w.r.t the coin
at index 0.
@dev Price scale determines the price band around which liquidity is
concentrated.
@return uint256 Price scale of coin.
"""
return self.cached_price_scale
allowed_extra_profit
¶
TwoCrypto.allowed_extra_profit() -> uint256:
Getter for the allowed extra profit value.
Returns: allowed extra profit (uint256
).
Source code
packed_rebalancing_params: public(uint256) # <---------- Contains rebalancing
# parameters allowed_extra_profit, adjustment_step, and ma_time.
@view
@external
def allowed_extra_profit() -> uint256:
"""
@notice Returns the current allowed extra profit
@return uint256 allowed_extra_profit value.
"""
return self._unpack_3(self.packed_rebalancing_params)[0]
adjustment_step
¶
TwoCrypto.allowed_extra_profit() -> uint256:
Getter for the adjustment step value.
Returns: adjustment step (uint256
).
Source code
packed_rebalancing_params: public(uint256) # <---------- Contains rebalancing
# parameters allowed_extra_profit, adjustment_step, and ma_time.
@view
@external
def adjustment_step() -> uint256:
"""
@notice Returns the current adjustment step
@return uint256 adjustment_step value.
"""
return self._unpack_3(self.packed_rebalancing_params)[1]
packed_rebalancing_params
¶
TwoCrypto.packed_rebalancing_params() -> uint256: view
Getter for the packed rebalancing parameters, consisting of allowed_extra_profit
, adjustment_step
, and ma_time
.
Returns: packed rebalancing parameters (uint256
).
Source code
Bonding Curve Parameters¶
A bonding curve is used to determine asset prices according to the pool's supply of each asset, more here.
Bonding curve parameters A
and gamma
values are upgradable by the the pools admin.
A
¶
TwoCrypto.A() -> uint256:
Getter for the current pool amplification parameter.
Returns: A (uint256
).
Source code
@view
@external
def A() -> uint256:
"""
@notice Returns the current pool amplification parameter.
@return uint256 A param.
"""
return self._A_gamma()[0]
@view
@internal
def _A_gamma() -> uint256[2]:
t1: uint256 = self.future_A_gamma_time
A_gamma_1: uint256 = self.future_A_gamma
gamma1: uint256 = A_gamma_1 & 2**128 - 1
A1: uint256 = A_gamma_1 >> 128
if block.timestamp < t1:
# --------------- Handle ramping up and down of A --------------------
A_gamma_0: uint256 = self.initial_A_gamma
t0: uint256 = self.initial_A_gamma_time
t1 -= t0
t0 = block.timestamp - t0
t2: uint256 = t1 - t0
A1 = ((A_gamma_0 >> 128) * t2 + A1 * t0) / t1
gamma1 = ((A_gamma_0 & 2**128 - 1) * t2 + gamma1 * t0) / t1
return [A1, gamma1]
gamma
¶
TwoCrypto.gamma() -> uint256:
Getter for the current pool gamma parameter.
Returns: gamma (uint256
).
Source code
@view
@external
def gamma() -> uint256:
"""
@notice Returns the current pool gamma parameter.
@return uint256 gamma param.
"""
return self._A_gamma()[1]
@view
@internal
def _A_gamma() -> uint256[2]:
t1: uint256 = self.future_A_gamma_time
A_gamma_1: uint256 = self.future_A_gamma
gamma1: uint256 = A_gamma_1 & 2**128 - 1
A1: uint256 = A_gamma_1 >> 128
if block.timestamp < t1:
# --------------- Handle ramping up and down of A --------------------
A_gamma_0: uint256 = self.initial_A_gamma
t0: uint256 = self.initial_A_gamma_time
t1 -= t0
t0 = block.timestamp - t0
t2: uint256 = t1 - t0
A1 = ((A_gamma_0 >> 128) * t2 + A1 * t0) / t1
gamma1 = ((A_gamma_0 & 2**128 - 1) * t2 + gamma1 * t0) / t1
return [A1, gamma1]
Oracle Methods¶
All pools have their own built in exponential moving average price oracle.
Prices and oracles are adjusted by when calling the internal tweak_price
method, which happens at add_liquidity
, remove_liquidity_one_coin
and _exchange
.
It is not